
T Routines
High level routines for managing, loading, displaying, and updating views. The following #include files are
necessary for using the T level routines.

#include "std.h"
#include "dvstd.h"
#include "dvtools.h"
#include "dvGR.h"
#include "Tfundecl.h"

TInit, TTerminate Performs the necessary initialization and clean-up for DV-Tools.
Tdl Manages data source lists (dl).
Tdp Manages drawports.
Tdr Drawing access functions.
Tds Manages data sources (ds).
Tdsv Manages data source variables (dsv).
Tlo Manages location objects.
Tob Access functions that work on objects that have subobjects.
Tproto Displays prototypes created in DV-Draw.
Tsc T level routines for managing screen objects (sc).
Tvd Accesses the display variables associated with drawing objects.
Tvi View access functions.

TInit and TTerminate

T Routines
 Performs the necessary initialization and clean-up for DV-Tools.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tinit & Tterminate
TInit Performs the initialization for DV-Tools.
Tterminate Performs the clean-up for DV-Tools.

TInit

Performs the initialization for DV-Tools.
BOOLPARAM
TInit (

char *search_path,
char *format_spec_file)

TInit performs the initialization for DV-Tools. TInit should be the first DV-Tools routine called by your program.
TInit reads your configuration file and any environment variables or logical names that are set. It also sets the initial
heap size for all specified DVxxINITIALHEAPSIZE configuration variables.
The first parameter sets the search_path, which is the list of directories that are searched for all files, such as view
files, data files, and processes. search_path is a string of directory paths, separated by spaces, to be checked in order
from left to right. The current directory is always searched first. If search_path is NULL, the value of the
environment variable or logical name DVPATH is used. If neither search_path nor DVPATH is set, the search path in
the configuration file is used.
The second parameter specifies which format specification file to use. The format specification file,
format_spec_file, contains information necessary to display graphs. Usually format_spec_file is NULL, and the
default file, dispforms.stb, is used. If you do not have dispforms.stb in your path and try to run a display formatter,
nothing happens. If there are no graphs in your display, you don’t need dispforms.stb. However, the search path
should include dispforms.stb so that if you add graphs to the drawing, your display runs correctly.
You can use your own version of dispforms.stb to change the number of display formatters, to include your own
display formatters, and to rearrange the order of the display formatters as they appear in DV-Draw. To change the
number of display formatters, you must add or delete entries in the table found in ToolNames.c. For a detailed
description of each display formatter, see the VD Routines chapter in this manual.
TInit returns DV_FAILURE if format_spec_file is not provided or if the default file, dispforms.stb, can’t be found.
Otherwise returns DV_SUCCESS. TInit only executes once within an application. Subsequent calls to TInit do
nothing, but still return DV_SUCCESS.

TTerminate

Performs the clean-up for DV-Tools.
BOOLPARAM
TTerminate (

void)

TTerminate performs any clean-up required at the end of a program that uses DV-Tools subroutines. It should be the
last DV-Tools subroutine called by your program. Always returns DV_SUCCESS.

Tdl (Tdatasourcelist)
Tdl Functions T Routines
Managesdata source lists (dl). Data source lists are DataViews private types that maintain lists of data sources (ds).
Data source lists can belong to one or more views (vi), so they maintain reference counts to avoid unexpectedly
being destroyed when their views are destroyed.

Tdl Functions

TdlAddDataSource

Tdl Functions T Routines

Adds a data source to the data source list.
BOOLPARAM
TdlAddDataSource (

DATASOURCELIST dsl,
DATASOURCE ds,
DATASOURCE ds_reference)

TdlAddDataSource adds a data source, ds, to the data source list, dsl. Adds ds before the referenced data source,
ds_reference. If ds_reference is NULL, then ds is added at the end of the list. Returns DV_FAILURE if dsl, ds, or
ds_reference are invalid, or if ds_reference is not in the dsl. Otherwise returns DV_SUCCESS.

TdlClone

Tdl Functions T Routines

Copies a data source list.
DATASOURCELIST
TdlClone (

DATASOURCELIST dsl)

TdlClone creates and returns a deep copy of a data source list, dsl. This routine does not clone bindings between data
source variables and the variable descriptors of dynamic objects. Returns DV_FAILURE if it is passed an invalid dsl.

TdlCloseData

Tdl Functions T Routines

Closes all files and processes.
BOOLPARAM
TdlCloseData (

DATASOURCELIST dsl)

TdlCloseData closes all files and processes referenced by every data source in the data source list, dsl. Returns
DV_FAILURE if it is passed an invalid dsl. Otherwise returns DV_SUCCESS.

TdlCreate

Tdl Functions T Routines

Creates and returns an empty data source list.
DATASOURCELIST
TdlCreate (void)

TdlDeleteDataSource

Tdl Functions T Routines

Deletes a data source from the data source list.
BOOLPARAM
TdlDeleteDataSource (

DATASOURCELIST dsl,
DATASOURCE ds)

TdlDeleteDataSource removes a data source, ds, from the data source list, dsl. Returns DV_FAILURE if ds or dsl is
invalid. Otherwise returns DV_SUCCESS.

TdlDestroy

Tdl Functions T Routines

Conditionally destroys a data source list.
int
TdlDestroy (

DATASOURCELIST dsl)

TdlDestroy conditionally destroys a data source list, dsl. The reference count is decremented by one and dsl is
deallocated only if its reference count falls to zero. Otherwise, it is assumed that other views still point to it and no
action is taken. The reference count for a data source list is incremented only by a call to TviMergeAddDataSources
or TviMergeDataSources.
Returns the new reference count of dsl. If the reference count is zero and no dynamic objects are bound to data
sources in the list, destroys dsl and returns 0. If the reference count is zero and dsl contains data sources that are still
bound to dynamic objects, returns -1 to indicate the error condition.
If the data source list being destroyed was attached to a view, you must make a subsequent call to
TviPutDataSourceList to substitute another data source list or a NULL data source list in place of the one destroyed.

TdlForEachDataSource

Tdl Functions T Routines

Traverses all data sources.
ADDRESS
TdlForEachDataSource (

DATASOURCELIST dsl,
TDLFOREACHDSFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

DATASOURCE datasource,
ADDRESS argblock)

TdlForEachDataSource traverses all data sources in the data source list, dsl, and calls fun for each data source.
Continues the traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal when fun
returns a non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the return value of the
last call to fun.
fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have two parameters: the data source being processed, and the argument or argument block required by the
function. The argument can be NULL. If more than one argument is required, the argument block should be a pointer
to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1. to perform a particular operation on each data source in dsl, or
2. to find a particular data source in dsl.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return V_CONTINUE_TRAVERSAL for ADDRESS if the data source is
not found. Otherwise it should return the data source for ADDRESS.
Note: You should not alter the list by adding, deleting, or reordering the data sources during traversal.
For an example of a typical function, see the example under TdrForEachNamedObject . Note that the example
demonstrates the use of a function with three parameters, but TdlForEachDataSource requires only two.

TdlForEachVar

Tdl Functions T Routines

Traverses all data source variables.
ADDRESS
TdlForEachVar (

DATASOURCELIST dsl,
TDLFOREACHDSVFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

DATASOURCE datasource,
DSVAR dsvar,
ADDRESS argblock)

TdlForEachVar traverses all data source variables in the data source list, dsl, and calls fun for each data source
variable. Continues the traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal when
fun returns a non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the return value of
the last call to fun. For a description of fun, see TdlForEachDataSource. Note that TdlForEachDataSource traverses
data sources, passing two parameters to fun. TdlForEachVar traverses data source variables, passing three
parameters to fun: the data source, the data source variable, and the argument block.

TdlGetNamedDataSource

Tdl Functions T Routines

Gets a named data source from a data source list.
DATASOURCE
TdlGetNamedDataSource (

DATASOURCELIST dsl,
char *name)

TdlGetNamedDataSource gets and returns the first data source with the passed name, name. Returns DV_FAILURE
if it is passed an invalid data source list, dsl.

TdlLoad

Tdl Functions T Routines

Loads a data source list.
DATASOURCELIST
TdlLoad (

char *filename)

TdlLoad loads a data source list from a file, filename. Returns DV_FAILURE if the file cannot be opened, or if the
loaded file does not contain a valid data source list.

TdlOpenData

Tdl Functions T Routines

Opens all files and processes.
BOOLPARAM
TdlOpenData (

DATASOURCELIST dsl)

TdlOpenData opens all files and processes referenced by every data source in the data source list, dsl. Returns
DV_FAILURE if any data sources in dsl could not be opened. Otherwise returns DV_SUCCESS.

TdlReadData

Tdl Functions T Routines

Reads all data for one iteration.
int
TdlReadData (

DATASOURCELIST dsl)

TdlReadData reads one iteration of data for each file and process in the data source list, dsl. Returns the number of
data sources that have reached the end of the file.

TdlSave

Tdl Functions T Routines

Saves a data source list.
BOOLPARAM
TdlSave (

DATASOURCELIST dsl,
char *filename,
int access_mode)

TdlSave saves a data source list, dsl, to a file, filename, using access_mode. access_mode should be
WRITE_EXPANDED for ASCII write, or WRITE_COMPACT for binary write. Flag values are defined in VOstd.h.
Returns DV_FAILURE if dsl is invalid or the file can’t be opened. Otherwise returns DV_SUCCESS.

TdlValid

Tdl Functions T Routines

Determines if a data source list is valid.
BOOLPARAM
TdlValid (

DATASOURCELIST dsl)

TdlValid returns DV_SUCCESS if the data source list is valid. Otherwise returns DV_FAILURE.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tdl Functions
TdlAddDataSource Adds a data source to the data source list.
TdlClone Copies a data source list.
TdlCloseData Closes all files and processes.
TdlCreate Creates an empty data source list.
TdlDeleteDataSource Deletes a data source from the data source list.
TdlDestroy Conditionally destroys a data source list.
TdlForEachDataSource Traverses all data sources.
TdlForEachVar Traverses all data source variables.
TdlGetNamedDataSource Gets a named data source from a data source list.
TdlLoad Loads a data source list.
TdlOpenData Opens all files and processes.
TdlReadData Reads all data for one iteration.
TdlSave Saves a data source list.
TdlValid Determines if a data source list is valid.

The DV-Tools Reference Manual
T Routines
VO Routines
VUer Routines
VN Module (Interaction Handlers)
VD Module
VG Routines
VP Routines
VT Routines
VU Routines
GR Routines
Include Files
Error Messages

Tdp (Tdrawport)
Tdp Functions T Routines

Manages drawports.

A drawport (dp) is a DataViews private structure that contains all the information needed to display a view on a
screen. How the view appears is specified by two boundary viewport rectangles contained in the drawport structure:
a drawing viewport, specified in world coordinates, that describes the portion of the view to be displayed in the
drawport; and a screen viewport, specified in virtual coordinates, that describes the portion of the screen where the
view is to be displayed. The drawport also contains transform objects which hold the world-to-screen and screen-to-
world coordinate transformation mapping, and information about obscuring drawports to determine clipping.
Drawports belong to screen objects. Each screen object maintains an ordered visibility list of its drawports that
determines which drawports are on top. A drawport takes up a specific amount of screen real estate and obscures
other drawports below it. When a drawport is created, it is placed at the top of the visibility list for its screen. Every
drawport contains a pointer to a view and to its own screen object. The screen object represents the device, or
window, on which the view is displayed.

Dynamic objects maintain drawport-specific information, so they can only be drawn in one drawport at a time. To
draw a dynamic object or a view with dynamics in more than one drawport at a time, clone it first and use the copy
in the other drawport. To draw the same dynamic view in different drawports at different times, destroy (or erase)
the previous drawport before creating (or drawing) the new drawport. In this case, the view does not need to be
cloned.

TdpDraw handles the initial drawing of a drawport. As a result, it initializes data buffers for graphs and input
objects. TdpDrawObject is the analogous routine that handles the initial drawing and data buffer initialization for
an individual object drawn in a drawport. Other drawing routines, such as TdpDrawNext, TdpRedraw, and
TdpErase, are not effective until the drawport is drawn using TdpDraw.

TdpDrawNext or TdpRedrawNext updates the dynamics in the drawport; TdpDrawNextObject updates the
dynamics for one object in the drawport. TdpDrawNextchecks all objects in the drawport to determine which are
affected by the update and only redraws those objects. TdpRedrawNext redraws all objects in the drawport,
whether or not they are affected by the update. Depending on your application, either TdpDrawNext or
TdpRedrawNext may be faster. For drawports with many objects (more than several hundred) and many dynamic
objects, TdpRedrawNext is usually faster. For drawports with fewer objects and few dynamic objects,
TdpDrawNext might be faster. Try each method to determine which is more efficient for your application.

TdpRedraw redraws a drawport after operations such as resizing or zooming. For example, TdpBack, TdpFront,
TdpPan, TdpResize, TdpZoom, and TdpZoomTo must be followed by a call to TdpRedraw.
TdpRedrawObject is the corresponding routine that redraws an individual object that was drawn using
TdpDrawObject.

TdpErase erases the drawport and clears the data buffers for graphs and input objects. It is the opposite of
TdpDraw, which draws the drawport and initializes the data buffer. TdpEraseObjectis the analogous routine that
erases and clears the data buffers for an individual object drawn into the drawport. To draw the drawport or object
again after erasing, you must call TdpDraw or TdpDrawObject, not TdpRedraw or TdpRedrawObject.

TdpDraw, TdpDrawNext, TdpRedrawNext, TdpDrawNextObject, TdpDrawObject, TdpErase, and
TdpEraseObject change the value of the current screen, which is an internal global variable, to the drawport’s
screen.

Tdp Functions

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tdp Functions
TdpBack Moves a drawport to the back of the visibility list.
TdpCreate Createsa new drawport.
TdpCreateStretch Creates a new drawport with stretched coordinates.
TdpDestroy Destroys a drawport structure.
TdpDraw Draws the contents of a drawport.
TdpDrawNext Updates all dynamic objects within a drawport’s view.
TdpDrawNextObject Updates a specific dynamic object within a drawport.
TdpDrawObject Draws a specific object within a drawport.
TdpErase Erases the contents of a drawport.
TdpEraseObject Erases an object within a drawport.
TdpForEachDrawport Applies a function to all drawports, in all screens.
TdpFront Moves a drawport to the front of the visibility list.
TdpGetDrawingVp Gets the drawing viewport rectangle of a drawport.
TdpGetScale Gets the scale factor of a drawport.
TdpGetScreen Gets the screen object of a drawport.
TdpGetScreenVp Gets the screen viewport rectangle of a drawport.
TdpGetView Gets the view of a drawport.
TdpGetXform Gets one of the drawport’s transformation objects.
TdpIsDrawn Determines if a drawport has been drawn.
TdpMaskPlanes Sets the write mask for a drawport.
TdpObsvpGet Returns a list of obscuring viewports.
TdpPan Pans a view within its drawport.
TdpRedraw Redraws a portion of the drawport.
TdpRedrawNext Updates all dynamic objects and redraws the contents of the

drawport.
TdpRedrawObject Redraws an object in the drawport.
TdpResize Changes the size and position of a drawport.
TdpScreenToWorld Converts a point from screen to world coordinates.
TdpWorldToScreen Converts a point from world to screen coordinates.
TdpZoom Scales a view within its drawport.
TdpZoomTo Scales and pans a view within its drawport.

TdpBack

Tdp Functions T Routines

Moves a drawport to the back of the visibility list.

BOOLPARAM
TdpBack (

DRAWPORT dp)

TdpBack moves the drawport, dp, to the back of the visibility list for the drawport’s screen. Does not redraw the
drawport. Must be followed by a call to TdpRedraw in order for it effects to be visible. Returns NO if it is passed
an invalid dp. Otherwise returns YES. For more information, see the introduction to this module.

TdpCreate

Tdp Functions T Routines

Creates a new drawport.

DRAWPORT
TdpCreate (

OBJECT screen,
VIEW view,
RECTANGLE *vvp_screen,
RECTANGLE *wvp_drawing)

TdpCreate creates and returns a drawport. The drawport is attached to the screen object specified by screen, and is
added to its drawport visibility list. screen should have been previously created by a call to TscOpenSet. If the
screen argument is NULL, the current screen is used. view specifies the view to be displayed on the screen.
wvp_drawing is the drawing viewport and specifies what part of the view is to be drawn on the screen. It is
expressed in world coordinates (-16K to 16K). The vvp_screen parameter is the screen viewport and specifies where
on the screen that the view is to be displayed. It is expressed in virtual coordinates (0 to 32K).

The wvp_drawing and vvp_screen viewports define the world-to-screen coordinate transformation of the drawport. It
is best to make sure that the aspect ratio of these two viewports are approximately equal. If the aspect ratio of these
two viewports is different, TdpCreate uses a best fit algorithm to preserve the aspect ratio of the view. The view is
shrunk until it is small enough to fit inside the screen viewport. This leaves extra space on the sides or on the top of
the screen viewport.

If vvp_screen is NULL, the whole screen is used. If wvp_drawing is NULL, the drawing viewport has the same
aspect ratio as the screen viewport and the origin of the view is centered in the screen viewport. A view can have a
preferred scale set in DV-Draw or using VOdrSetScale. If there is a preferred scale, the portion of the view that fits
is drawn to the scale within the screen viewport. Otherwise, the view is expanded equally in each dimension until it
fills the screen viewport. In this case, either the top and bottom or the sides of the view may not be visible.

If both vvp_screen and wvp_drawing are NULL, no preferred scale has been set, and the application is being run in a
window or device with the same aspect ratio in which DV-Draw was run when the view was created, the drawport
displays the view exactly as it appeared in DV-Draw. TdpCreate was formerly called TdpSetupDraw. Returns
DV_FAILURE if it is passed an invalid view.

TdpCreateStretch

Tdp Functions T Routines

Creates a new drawport with stretched coordinates.

DRAWPORT
TdpCreateStretch (

OBJECT screen,
VIEW view,
RECTANGLE *vvp_screen,
RECTANGLE *wvp_drawing)

TdpCreateStretch creates and returns a drawport in which the dimensions of the objects in the view are stretched to
make the portion of the view specified by wvp_drawing exactly fit in the specified screen viewport, vvp_screen.
Stretching transforms the object’s control points differently in the x and y dimensions. Therefore, stretched arcs and
circles may change their sizes relative to other object types. If wvp_drawing is NULL TdpCreateStretch is equivalent
to TdpCreate in that it preserves the aspect ratio of view. Returns DV_FAILURE if it is passed an invalid view.

TdpDestroy

Tdp Functions T Routines

Destroys a drawport structure.

BOOLPARAM
TdpDestroy (

DRAWPORT dp)

TdpDestroy destroys the drawport structure, dp, removing it from its screen’s visibility list and freeing the allocated
memory. Returns DV_FAILURE if it is passed an invalid dp. Otherwise returns DV_SUCCESS. Formerly called
TdpFree.

TdpDraw

Tdp Functions T Routines

Draws the contents of a drawport.

BOOLPARAM
TdpDraw (

DRAWPORT dp)

TdpDraw draws the drawport’s view on its screen, moving the drawport, dp, to the front of the drawport visibility
list. Returns NO if it is passed an invalid dp. Otherwise returns YES. For more information, see the introduction to
this module.

TdpDrawNext

Tdp Functions T Routines

Updates all dynamic objects within a drawport’s view.

BOOLPARAM
TdpDrawNext (

DRAWPORT dp)

TdpDrawNext updates dynamic objects in the drawport when the values of their variable descriptors change. Objects
that use visibility dynamics are only redrawn if they are visible. Updates graphs each time it is called, but only
updates other dynamic objects if their data changes. Objects that have visibility dynamics may become invisible
when their data changes. In this case, TdpDrawNext uses the erase method specified by the dynamic control object
and only redraws the affected portions of the drawport. Note that TdpDraw must be called first in order for this
routine to work. Returns NO if it is passed an undrawn drawport. Otherwise returns YES. For more information, see
the introduction to this module.

TdpDrawNextObject

Tdp Functions T Routines

Updates a specific dynamic object within a drawport.

BOOLPARAM
TdpDrawNextObject (

DRAWPORT dp,
OBJECT object)

TdpDrawNextObject updates the object, object, in the drawport, dp, when the values of their variable descriptors
change. Objects that use visibility dynamics are only redrawn if they are visible. Updates graphs each time it is
called, but only updates other dynamic objects if their data changes. Objects that have visibility dynamics may
become invisible when their data changes. Note that TdpDraw or TdpDrawObject must be called first in order for
this routine to work. Returns NO if it is passed an undrawn dp. For more information, see the introduction to this
module.

TdpDrawObject

Tdp Functions T Routines

Draws a specific object within a drawport.

BOOLPARAM
TdpDrawObject (

DRAWPORT dp,
OBJECT object)

TdpDrawObject draws the specified object, object, in the drawport, dp if the object is currently visible. Note that
TdpDraw must be called first in order for this routine to work. Returns NO if it is passed an undrawn dp. Otherwise
returns YES. For more information, see the introduction to this module.

TdpErase

Tdp Functions T Routines

Erases the contents of a drawport.

BOOLPARAM
TdpErase (

DRAWPORT dp)

TdpErase erases the drawport, dp, by filling it with the background color of its view. Note that TdpDraw must be
called first. Returns NO if it is passed an undrawn dp. Otherwise returns YES. For more information, see the
introduction to this module.

TdpEraseObject

Tdp Functions T Routines

Erases an object within a drawport.

BOOLPARAM
TdpEraseObject (

DRAWPORT dp,
OBJECT object)

TdpEraseObject erases the object, object, in the drawport, dp, by drawing the object in the background color of the
drawing. Note that TdpDraw must be called first in order for this routine to work and that erasing an object does not
remove it from the drawing. Objects behind the erased object are not redrawn, except for input objects, where the
background is controlled by flag settings. When used to erase a dynamic object, TdpEraseObject clears the
dynamic object’s data buffer. To draw the object again, you must call TdpDrawObject. Returns NO if it is passed an
undrawn dp. Otherwise returns YES. For more information, see the introduction to this module.

TdpForEachDrawport

Tdp Functions T Routines

Applies a function to all drawports, in all screens.

ADDRESS
TdpForEachDrawport (

TDPTRAVERSEFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

DRAWPORT dp,
ADDRESS argblock)

TdpForEachDrawport traverses all the drawports on the current screen and calls the function, fun, for each
drawport, dp. Continues the traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal
when fun returns a non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the return
value of the last call to fun.

fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have two parameters: the drawport being processed, and the argument or argument block required by the
function. The argument can be NULL. If more than one argument is required, the argument block should be a pointer
to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1. to perform a particular operation on each drawport, or
2. to find a particular drawport.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return V_CONTINUE_TRAVERSAL for ADDRESS if the drawport is not
found. Otherwise it should return the drawport for ADDRESS.

Note: You should not alter the drawport list by adding, deleting, or reordering drawports during traversal.

For an example of a typical function, see the example under TdrForEachNamedObject . Note that the example
demonstrates the use of a function with three parameters, but TdpForEachDrawport requires only two.

TdpFront

Tdp Functions T Routines

Moves a drawport to the front of the visibility list.

BOOLPARAM
TdpFront (

DRAWPORT dp)

TdpFront moves the drawport, dp, to the front of the visibility list for the drawport’s screen. Does not erase or
redraw any drawports. Returns NO if it is passed an invalid dp. Otherwise returns YES. For more information, see
the introduction to this module.

TdpGetDrawingVp

Tdp Functions T Routines

Gets the drawing viewport rectangle of a drawport.

RECTANGLE *
TdpGetDrawingVp (

DRAWPORT dp)

TdpGetDrawingVp returns a pointer to the drawing viewport rectangle of the drawport, dp, specified in world
coordinates (-16k,+16k). Before TdpDraw is called, this routine simply returns the drawing viewport parameter
used in the drawport creation call. When TdpDraw is called, the drawing viewport may be adjusted to fit the screen
viewport, so more of the drawing shows than intended. TdpGetDrawingVp returns the intended drawing viewport,
not the actual visible portion of the drawing, which can change when the aspect ratio of the screen changes.

For the case where TdpCreate is called with a NULL drawing viewport, TdpDraw calculates a “best fit” drawing
viewport that is usually less than the entire world coordinates. This best fit drawing viewport becomes the intended
drawing viewport.

If the drawport is zoomed out so that the off-drawing area is visible, the returned rectangle represents the entire
visible area as if in world coordinates. In this case, one or more coordinates of the rectangle will be outside the
world coordinate range. Returns DV_FAILURE if it is passed an invalid dp.

TdpGetScale

Tdp Functions T Routines

Gets the scale factor of a drawport.

double
TdpGetScale (

DRAWPORT dp)

TdpGetScale returns the scale factor of the drawport. The scale factor maps a unit world coordinate to screen
coordinates. Returns DV_FAILURE if it is passed an invalid drawport.

TdpGetScreen

Tdp Functions T Routines

Gets the screen object of a drawport.

OBJECT
TdpGetScreen (

DRAWPORT dp)

TdpGetScreen returns the screen object to which the drawport, dp, is attached. Returns DV_FAILURE if it is passed
an invalid dp.

TdpGetScreenVp

Tdp Functions T Routines

Gets the screen viewport rectangle of a drawport.

RECTANGLE *
TdpGetScreenVp (

DRAWPORT dp)

TdpGetScreenVp returns a pointer to the screen viewport rectangle of the drawport, dp, specified in virtual
coordinates (0-32k). Returns DV_FAILURE if it is passed an invalid dp.

TdpGetView

Tdp Functions T Routines

Gets the view of a drawport.

VIEW
TdpGetView (

DRAWPORT dp)

TdpGetView returns the view belonging to the drawport, dp. Returns DV_FAILURE if it is passed an invalid dp.

TdpGetXform

Tdp Functions T Routines

Gets one of the drawport’s transformation objects.

OBJECT
TdpGetXform (

DRAWPORT dp,
int flag)

TdpGetXform returns either one of the drawport’s transformations depending on flag. See also VOxform. Valid flags
are:

DR_TO_SCREEN drawing to screen xform
SCREEN_TO_DR screen to drawing xform

Returns DV_FAILURE if it is passed an invalid dp or flag.

TdpIsDrawn

Tdp Functions T Routines

Determines if a drawport has been drawn.

BOOLPARAM
TdpIsDrawn (

DRAWPORT dp)

TdpIsDrawn determines whether the drawport, dp, has been drawn. Returns YES or NO. Returns NO if it is passed
an invalid dp.

TdpMaskPlanes

Tdp Functions T Routines

Sets the write mask for a drawport.

LONG
TdpMaskPlanes (

DRAWPORT drawport,
LONG mask)

TdpMaskPlanes sets the write mask used for all Tdp drawing and erasing operations and TscRedraw. This routine
lets you set up write masks for planemasking on a drawport-by-drawport basis.

By default, the drawport write mask is 0. This makes the write mask specified by GRmaskplanes, if any, effective
for the drawport. If GRmaskplanes also has not been called to set a write mask, the default condition is no
masking. To turn off the mask specified by a previous call to TdpMaskPlanes, set mask to 0.

Returns the previous write mask.

TdpObsvpGet

Tdp Functions T Routines

Returns a list of obscuring viewports.

RECTANGLE **
TdpObsvpGet (

DRAWPORT dp)

TdpObsvpGet returns a pointer to a NULL-terminated array of viewports, in screen coordinates, that obscure the
drawport, dp.

TdpPan

Tdp Functions T Routines

Pans a view within its drawport.

BOOLPARAM
TdpPan (

DRAWPORT dp,
DV_POINT *wpt_center)

TdpPan pans a view within its drawport, dp. wpt_center specifies a world coordinate point in the view’s drawing to
be brought to the center of the drawport. Does not erase or redraw any drawports. Returns NO if it is passed an
invalid dp. Otherwise returns YES. For more information, see the introduction to this module.

TdpRedraw

Tdp Functions T Routines

Redraws a portion of the drawport.

BOOLPARAM
TdpRedraw (

DRAWPORT dp,
RECTANGLE *svp,
int erase_flag)

TdpRedraw redraws the portion of the drawport, dp, specified by the screen coordinate rectangle, svp. Only that
portion of the rectangle within the drawport boundary is redrawn. If svp is NULL, the entire drawport is redrawn. If
erase_flag is YES, the specified portion of dp is erased before being redrawn. Objects that were drawn using
TdpDrawObject are not redrawn; for these objects, use TdpRedrawObject.

TdpRedrawNext

Tdp Functions T Routines

Updates all dynamic objects and redraws the contents of the drawport.

BOOLPARAM
TdpRedrawNext (

DRAWPORT drawport)

TdpRedrawNext is the same as TdpDrawNext except it does not use the erase method specified by the dynamic
control object. Instead, TdpRedrawNext redraws the whole drawport. Note that TdpDrawmust be called first in
order for this routine to work. Returns NO if it is passed an undrawn drawport. Otherwise returns YES. For more
information, see the introduction to this module.

TdpRedrawObject

Tdp Functions T Routines

Redraws an object in the drawport.

BOOLPARAM
TdpRedrawObject (

DRAWPORT dp,
OBJECT object)

TdpRedrawObject redraws an object, object, that was drawn using TdpDrawObject. The object must be currently
visible. Returns NO if it is passed an undrawn dp. Otherwise returns YES.

TdpResize

Tdp Functions T Routines

Changes the size and position of a drawport.

BOOLPARAM
TdpResize (

DRAWPORT dp,
RECTANGLE *vvp_screen)

TdpResize changes the screen viewport rectangle of the drawport, dp. The new screen viewport is specified in virtual
coordinates by the rectangle parameter, vvp_screen. Does not erase or redraw any drawports. Returns NO if it is
passed an invalid dp. Otherwise returns YES. For more information, see the introduction to this module.

TdpScreenToWorld

Tdp Functions T Routines

Converts a point from screen to world coordinates.

BOOLPARAM
TdpScreenToWorld (

DRAWPORT dp,
DV_POINT *spt,
DV_POINT *wpt)

TdpScreenToWorld converts a point in screen coordinates, spt, to world coordinates, wpt, according to the screen-to-
world coordinate transform of the drawport, dp. The points are represented as DV_POINT structures. Returns
DV_FAILURE if it is passed an invalid dp. Otherwise returns DV_SUCCESS.

TdpWorldToScreen

Tdp Functions T Routines

Converts a point from world to screen coordinates.

BOOLPARAM
TdpWorldToScreen (

DRAWPORT dp,
DV_POINT *wpt,
DV_POINT *spt)

TdpWorldToScreen converts a point in world coordinates, wpt, to screen coordinates, spt, according to the world-to-
screen coordinate transform of the drawport, dp. The points are represented as DV_POINT structures. Returns
DV_FAILURE if it is passed an invalid dp. Otherwise returns DV_SUCCESS.

TdpZoom

Tdp Functions T Routines

Scales a view within its drawport.

BOOLPARAM
TdpZoom (

DRAWPORT dp,
double scale)

TdpZoom changes the scale, scale, of the drawing in the drawport, dp. If the new scale factor compresses the whole
drawing to a single pixel, or expands the world coordinates to be more than five pixels apart, the routine does
nothing. Does not erase or redraw any drawports. Returns NO if it is passed an invalid dp or if no change is made.
For more information, see the introduction to this module.

TdpZoomTo

Tdp Functions T Routines

Scales and pans a view within its drawport.

BOOLPARAM
TdpZoomTo (

DRAWPORT dp,
RECTANGLE *zoom_to_rect)

TdpZoomTo pans a view and changes its scale to display the drawing viewport specified by
zoom_to_rect. If the drawport was created using TdpCreateStretch, the new drawing viewport
is stretched to fit the current screen viewport. If the drawport was created using TdpCreate, a
new “best fit” is calculated. Does not erase or redraw any drawports. Returns NO if it is
passed an invalid dp or if no change is made. For more information, see the introduction to
this module.

Tdr (Tdrawing)
Tdr Functions T Routines

Drawing access functions.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
 Tdr Tob Tvi
Tdr Functions
TdrForEachNamedObject Traverses all the named objects in a drawing.
TdrGetNamedObject Gets a named object from a drawing.
TdrGetObjectName Gets the name of an object from a drawing.
TdrGetSelectedObject Gets the selected object from a drawing.
TdrNameObject Names an object in a drawing.

TdrForEachNamedObject

Tdr Functions T Routines

Traverses all the named objects in a drawing.

ADDRESS
TdrForEachNamedObject (

OBJECT drawing,
TDRFOREACHNAMEDOBJFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

OBJECT object,
char *name,
ADDRESS argblock)

TdrForEachNamedObject traverses all the named objects in the drawing and calls fun for each named object.
Continues traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal when fun returns a
non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the return value of the last call
to fun.

fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have three parameters: the object being processed, the name of the object, and the argument or argument
block required by the function. The argument can be NULL. If more than one argument is required, the argument
block should be a pointer to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1. to perform a particular operation on each named object in the drawing, or
2. to find a particular object with a given name.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return a NULL value for ADDRESS if the object is not found. Otherwise it
should return the ADDRESS of the object.

Note: You should not alter the drawing by adding, deleting, or reordering the named objects during traversal.

The following code fragments illustrate the use of traversal functions. In the first fragment, the function called by
TdrForEachNamedObject continues the traversal by always returning NULL.

VIEW masterview, componentview;

OBJECT masterdrawing, componentdrawing;

ADDRESS AddToDrawing (OBJECT object, char *name, ADDRESS drawing_1);
int
main (int argc, char *argv[]);
{

. . .
masterview = TviLoad ("MasterView");
masterdrawing = TviGetDrawing (masterview);
componentview = TviLoad ("ComponentView");
componentdrawing = TviGetDrawing (componentview);
TdrForEachNamedObject (componentdrawing, AddToDrawing, (ADDRESS)

&masterdrawing);
. . .

}

/* AddToDrawing adds the object and its name to a drawing */
ADDRESS
AddToDrawing (

OBJECT object,
char *name,
ADDRESS args)

{
OBJECT *drawing_1 = (OBJECT *) args;
VOdrObAddNamed (*drawing_1, object, name);
return V_CONTINUE_TRAVERSAL;

}

In the following code fragment, the function called by TobForEachVdp ends the traversal by returning a non-NULL
value.

VARDESC vdp;
ADDRESS getvdp (OBJECT, VARDESC, ADDRESS);
OBJECT drawing;

/* Get a variable descriptor from the drawing. */
vdp = TobForEachVdp (drawing, getvdp, (ADDRESS)0);

. . .

ADDRESS
getvdp (

OBJECT obj, /* not used */
VARDESC vdp,
ADDRESS) /* not used */

{
return (ADDRESS) vdp;

}

TdrGetNamedObject

Tdr Functions T Routines

Gets a named object from a drawing.

OBJECT
TdrGetNamedObject (

OBJECT drawing,
char *name)

TdrGetNamedObject finds the first object in the drawing with the specified name. It returns the named object.
Returns NULL if the object is not in the drawing or if the object is not named in the drawing.

TdrGetObjectName

Tdr Functions T Routines

Gets the name of an object from a drawing.

char *
TdrGetObjectName (

OBJECT drawing,
OBJECT object)

TdrGetObjectName returns the name of the specified object in the drawing. Returns NULL if the object is not named
or does not exist in the drawing. This function is typically called after TdrGetSelectedObject.

TdrGetSelectedObject

Tdr Functions T Routines

Gets the selected object from a drawing.

OBJECT
TdrGetSelectedObject (

OBJECT drawing,
OBJECT location_object,
int check_mode)

TdrGetSelectedObject tries to find the object in the drawing that was selected by the location object. Returns the
object; NULL if no object was selected. If check_mode is NAMED_SEARCH, only checks named objects in the
drawing. If check_mode is FULL_SEARCH, checks all objects. Returns the selected object. You must use
TloGetSelectedDrawport to check that the drawport you want is current before calling TdrGetSelectedObject.
TloGetSelectedObject is an alternate method for selecting an object that does not require a call to
TloGetSelectedDrawport.

TdrNameObject

Tdr Functions T Routines

Names an object in a drawing.

BOOLPARAM
TdrNameObject (

OBJECT drawing,
OBJECT object,
char *name)

TdrNameObject names the object in the drawing. If the name is NULL, the object’s current name is deleted. Returns
YES if the specified object is in the drawing. Otherwise returns NO.

Tds (Tdatasource)
Tds Functions T Routines

Manages data sources (ds). A data source represents a single source of data, in the form of a constant, file, function,
memory, or process. It contains the name of the source of data, and a list of data source variables (dsv) that accept
that data. Data sources are contained in data source lists (dl) which can belong to views (vi).

Function data sources have a special creation routine and other special routines for handling function descriptor sets,
function names, function arguments, and auxiliary data. These routines are not useful for other types of data sources.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tds Functions
TdsAddDsVar Adds a data source variable to a data source.
TdsClone Copies a data source.
TdsCloseData Closes a data source.
TdsClrFcnArg Clears an argument for a function associated with a data

source.
TdsCreate Creates a new data source.
TdsCreateDsVar Creates a new data source variable in a data source.
TdsDeleteDsVar Deletes a data source variable from a data source.
TdsDestroy Destroys a data source, freeing its memory.
TdsEditAttributes Changes data source attributes.
TdsFdsCreate Creates a data source using a function descriptor set.
TdsForEachVar Traverses all data source variables in a data source.
TdsGetAttributes Gets data source attributes.
TdsGetAuxData Gets the auxiliary data buffer of a function data source.
TdsGetFcnArg Gets an argument for a function associated with a data source.
TdsGetFcnArgCnt Gets the number of arguments for a function associated with a

data source.
TdsGetFcnName Gets the descriptive name of a function associated with a data

source.
TdsGetFdsName Gets the name of the function descriptor set used by a data

source.
TdsGetName Gets the name of a data source.
TdsGetNamedDsVar Returns the data source variable with the given name.
TdsLoad Loads a new data source from a file.
TdsMerge Merges one data source into another.
TdsMoveDataSource Moves a data source.
TdsOpenData Opens all files and processes in a data source.
TdsReadData Reads data for one iteration of a data source.
TdsSave Saves a data source to a file.
TdsSetAuxData Assigns an auxiliary data buffer to a function data source.
TdsSetFcnArg Sets an argument for a function associated with a data source.
TdsSetFcnByName Sets the function associated with a data source.
TdsSetFdsByName Sets the function descriptor set used by a data source.
TdsValid Determines if a data source is valid.
TdsWriteData Writes one iteration of data out to a target.

TdsAddDsVar

Tds Functions T Routines

Adds a data source variable to a data source.

BOOLPARAM
TdsAddDsVar (

DATASOURCE ds,
DSVAR dsvar,
DSVAR dsvar_reference)

TdsAddDsVar adds a data source variable to the data source. The variable, dsvar, is added before dsvar_reference.
However, if dsvar_reference is NULL, the variable is added to the end of the list of data source variables in the data
source. Returns DV_FAILURE if ds, dsvar, or dsvar_reference, is invalid, or if dsvar_reference is not in the data
source. Otherwise returns DV_SUCCESS.

TdsClone

Tds Functions T Routines

Copies a data source.

DATASOURCE
TdsClone (

DATASOURCE ds)

TdsClone creates and returns a deep copy of the data source, ds. Does not clone bindings between data source
variables and the variable descriptors of dynamic objects. Returns DV_FAILURE if it is passed an invalid data
source.

TdsCloseData

Tds Functions T Routines

Closes a data source.

BOOLPARAM
TdsCloseData (

DATASOURCE ds)

TdsCloseData closes the file or process associated with the data source, ds. Returns DV_FAILURE if it is passed an
invalid data source. Otherwise returns DV_SUCCESS.

TdsClrFcnArg

Tds Functions T Routines

Clears an argument for a function associated with a data source.

BOOLPARAM
TdsClrFcnArg (

DATASOURCE ds,
V_FDS_FCN_ENUM fcntype,
int argindex)

TdsClrFcnArg clears an argument for a specific type of function within the function descriptor set. Only optional
arguments can be cleared. ds is the data source which is using the function descriptor set, fcntype is the type of
function, and argindex is the index within the argument list. Valid types of functions are listed in
TdsSetFcnByName. Returns DV_SUCCESS if successful. Returns DV_FAILURE if argindex is too large, argindex
refers to a required argument, or no such function type is defined in the function descriptor set.

TdsCreate

Tds Functions T Routines

Creates a new data source.

DATASOURCE
TdsCreate (void)

TdsCreate creates and returns a new data source, ds. Use TdsFdsCreate to create a data source that gets its data
from a function descriptor set.

TdsCreateDsVar

Tds Functions T Routines

Creates a new data source variable in a data source.

DSVAR
TdsCreateDsVar (

DATASOURCE ds)

TdsCreateDsVar creates a new data source variable and adds it to the end of the list maintained by the data source,
ds. By default, the data source variable is created as a scalar float. Its default name is “Var:n,” where n is determined
by the number of data source variables created so far. To set the attributes of the new data source variable, call
TdsvEditAttributes after calling this routine. If the data source is a function data source and its function descriptor
set includes a data source variable creation function, TdsCreateDsVar calls this function. If this function fails, the
creation is aborted. Returns the new data source variable if successful. Otherwise returns NULL. To create and add a
data source variable elsewhere in the list, use TdsvCreate and TdsAddDsVar.

TdsDeleteDsVar

Tds Functions T Routines

Deletes a data source variable from a data source.

BOOLPARAM
TdsDeleteDsVar (

DATASOURCE ds,
DSVAR dsvar)

TdsDeleteDsVar removes but does not destroy a data source variable, dsv, from the data source, ds. Returns
DV_FAILURE if ds or dsvar is invalid, or if dsvar is not in the data source. Otherwise returns DV_SUCCESS.

TdsDestroy

Tds Functions T Routines

Destroys a data source, freeing its memory.

BOOLPARAM
TdsDestroy (

DATASOURCE ds)

TdsDestroy destroys a data source, ds, freeing its memory. Does nothing and returns DV_FAILURE if it is passed an
invalid data source, or an attempt is made to destroy a data source which is bound to variable descriptors of dynamic
objects. Otherwise returns DV_SUCCESS.

TdsEditAttributes

Tds Functions T Routines

Changes data source attributes.

BOOLPARAM
TdsEditAttributes (

DATASOURCE ds,
int type,
int format,
char *source)

TdsEditAttributes changes the attributes of the data source. Any field can be NOCHANGE, indicating no changes for
that attribute.

Valid type flags:

DSPROCESS DSFILE DSCONSTANT
DSFUNCTION DSMEMORY

Valid format flags:

DSASCII DSBINARY

format flags are valid only for type file or process. If ds is a file or a process, then source must match the name of
the file or process used as a data source; if ds is a constant, memory, or function data source then source is only a
label used to identify the data source. If source is NULL, default.dat is used. Returns DV_FAILURE if it is passed an
invalid ds. Otherwise returns DV_SUCCESS.

TdsFdsCreate

Tds Functions T Routines

Creates a data source using a function descriptor set.

DATASOURCE
TdsFdsCreate (

char *fds_name)

TdsFdsCreate creates a data source and associates a function descriptor set, fds_name, with it. If the function
descriptor set contains a data source creation function, TdsFdsCreate calls this function immediately after it creates
the data source. Returns the new data source of type DSFUNCTION.

TdsForEachVar

Tds Functions T Routines

Traverses all data source variables in a data source.

ADDRESS
TdsForEachVar (

DATASOURCE ds,
TDSFOREACHVARFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

DSVAR dsvar,
ADDRESS argblock)

TdsForEachVar traverses all of the data source variables in the data source and calls fun for each data source
variable. Continues the traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal when
fun returns a non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the return value of
the last call to fun.

fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have two parameters: the data source variable being processed, and the argument or argument block
required by the function. The argument can be NULL. If more than one argument is required, the argument block
should be a pointer to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1. to perform a particular operation on each data source variable in the data source, or
2. to find a particular data source variable in the data source.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return V_CONTINUE_TRAVERSAL for ADDRESS if the data source
variable is not found. Otherwise it should return the data source variable for ADDRESS.

Note: You should not alter the data source by adding, deleting, or reordering the data source variables during
traversal.

For an example of a typical function, see the example under TdrForEachNamedObject. Note that the example
demonstrates the use of a function with three parameters, but TdsForEachVar requires only two.

TdsGetAttributes

Tds Functions T Routines

Gets data source attributes.

BOOLPARAM
TdsGetAttributes (

DATASOURCE ds,
int *type,
int *format,
char **source)

TdsGetAttributes gets data source attributes.

Valid type flags:

DSPROCESS DSFILE DSCONSTANT
DSFUNCTION DSMEMORY

Valid format flags:

DSASCII DSBINARY

format flags are valid only for type file or process. If ds is a file or a process, then source must match the name of
the file or process used as the data source; if ds is a constant, memory, or function data source then source is only a
label used to identify the data source. Returns DV_FAILURE if it is passed an invalid ds. Otherwise returns
DV_SUCCESS.

TdsGetAuxData

Tds Functions T Routines

Gets the auxiliary data buffer of a function data source.

ADDRESS
TdsGetAuxData (

DATASOURCE ds)

TdsGetAuxData gets the address of the auxiliary data buffer from the data source, ds. The data buffer is used to store
data for a function descriptor set. For more information, see TdsSetAuxData. Returns the address if the query is
successful. Returns NULL if there is no address, if the data buffer was freed, or if an error occurs.

TdsGetFcnArg

Tds Functions T Routines

Gets an argument for a function associated with a data source.

BOOLPARAM
TdsGetFcnArg (

DATASOURCE ds,
V_FDS_FCN_ENUM fcntype,
int argindex,
int *typep,
ANYTYPE *valuep)

TdsGetFcnArg gets an argument for a specific type of function within the function descriptor set. ds is the data
source which is using the function descriptor set, fcntype is the type of function to query, and argindex is the index
within the argument list. Valid types of functions are listed in TdsSetFcnByName.

Returns the argument value in valuep and the type of argument in typep. Valid argument types are V_T_TYPE (text),
V_L_TYPE (long), V_D_TYPE (double), or V_DSV_TYPE (data source variable).

Returns DV_SUCCESS if the query is successful. Returns DV_FAILURE if no argument corresponds to the index, no
such function type is defined in the function descriptor set, or if an error occurs.

TdsGetFcnArgCnt

Tds Functions T Routines

Gets the number of arguments for a function associated with a data source.

BOOLPARAM
TdsGetFcnArgCnt (

DATASOURCE ds,
V_FDS_FCN_ENUM fcntype,
int *req_arg_cntp,
int *opt_arg_cntp)

TdsGetFcnArgCnt gets the count of the required and optional arguments for a specific type of function within the
function descriptor set. ds is the data source which is using the function descriptor set and fcntype is the type of
function to query. Valid types of functions are listed in TdsSetFcnByName.

Returns the number of required arguments in req_arg_cntp and the number of optional user-defined arguments in
opt_arg_cntp. Returns DV_SUCCESS if the query for the argument count is successful; DV_FAILURE if no such
function type is defined or if an error occurs.

TdsGetFcnName

Tds Functions T Routines

Gets the descriptive name of a function associated with a data source.

char *
TdsGetFcnName (

DATASOURCE ds,
V_FDS_FCN_ENUM fcntype)

TdsGetFcnName gets the name of the function of a specific type used by the data source. ds is the data source which
is using the function descriptor set. fcntype is the type of function to query. Valid types of functions are listed in
TdsSetFcnByName. Returns the descriptive name of the function if it exists. Returns NULL if there is no name or
if an error occurs.

TdsGetFdsName

Tds Functions T Routines

Gets the name of the function descriptor set used by a data source.

char *
TdsGetFdsName (

DATASOURCE ds)

TdsGetFdsName gets the name of the function descriptor set used by the data source. ds is the data source to query.
Returns the name of the function descriptor set if it exists. Returns NULL if an error occurs.

TdsGetName

Tds Functions T Routines

Gets the name of a data source.

char *
TdsGetName (

DATASOURCE ds)

TdsGetName returns the name of the data source, ds. Returns DV_FAILURE if it is passed an invalid ds.

TdsGetNamedDsVar

Tds Functions T Routines

Returns the data source variable with the given name.

DSVAR
TdsGetNamedDsVar (

DATASOURCE ds,
char *name)

TdsGetNamedDsVar returns the first data source variable with the name, name, if one exists. Returns NULL. Returns
DV_FAILURE if it is passed an invalid ds.

TdsLoad

Tds Functions T Routines

Loads a new data source from a file.

DATASOURCE
TdsLoad (

char *filename)

TdsLoad loads a data source, ds, from the file, filename. Returns DV_FAILURE if the file could not be opened or if
the loaded file does not contain a data source.

TdsMerge

Tds Functions T Routines

Merges one data source into another.

BOOLPARAM
TdsMerge (

DATASOURCE ds1,
DATASOURCE ds2,
int matchflag)

TdsMerge attempts to merge the data source, ds2, into the data source ds1 according to the matchflag.

DS_EXACTMATCH Merges if ds2 exactly matched ds1.
DS_SUBSETMATCH Merges if ds2 is a subset of ds1.
DS_NAMEMATCH Merges if the name of ds2 matches the name of

ds1.

TdsMerge returns DV_SUCCESS or DV_FAILURE.

TdsMoveDataSource

Tds Functions T Routines

Moves a data source.

BOOLPARAM
TdsMoveDataSource (

DATASOURCE dstomove,
DATASOURCE dstoinsertbefore)

TdsMoveDataSource is used to change the position of a data source. It moves dstomove from its current location to
before dstoinsertbefore. Both data sources can be in the same data source list or in different ones. If dstoinsertbefore
is NULL, the routine puts dstomove at the end of its own data source list. Returns DV_FAILURE if dstomove or
dstoinsertbefore are invalid. Otherwise returns DV_SUCCESS.

TdsOpenData

Tds Functions T Routines

Opens all files and processes in a data source.

BOOLPARAM
TdsOpenData (

DATASOURCE ds)

TdsOpenData opens the file or process associated with the data source, ds. Returns DV_FAILURE if ds is invalid or
cannot be opened.

TdsReadData

Tds Functions T Routines

Reads data for one iteration of a data source.

BOOLPARAM
TdsReadData (

DATASOURCE ds)

TdsReadData reads all the data for one iteration of the data source, ds, into its data source variables. Returns
DV_FAILURE if ds is invalid, not open, or has reached the end of the file. Otherwise returns DV_SUCCESS.

TdsSave

Tds Functions T Routines

Saves a data source to a file.

BOOLPARAM
TdsSave (

DATASOURCE ds,
char *filename,
int access_mode)

TdsSave saves a data source, ds, to a file, filename, using access_mode. access_mode should be
WRITE_EXPANDED for ASCII write, or WRITE_COMPACT for binary write. Flag values are defined in VOstd.h.
Returns DV_FAILURE if ds is invalid or if the file cannot be opened for writing. Otherwise returns DV_SUCCESS.

TdsSetAuxData

Tds Functions T Routines

Assigns an auxiliary data buffer to a function data source.

BOOLPARAM
TdsSetAuxData (

DATASOURCE ds,
ADDRESS data,
TDSFREEFUNPTR freefcn)

void
freefcn (

ADDRESS data)

TdsSetAuxData associates a user-defined auxiliary data buffer, data, and its free function, freefcn, with the data
source, ds. The auxiliary data buffer is created and maintained by the function descriptor set for use by its functions.
Setting data to NULL clears the data buffer.

The free function is optional. If it is specified, it is called automatically when TviCloseData, TdlCloseData, or
TdsCloseData is called. The free function frees the buffer and clears the address. If a free function is not specified,
the buffer remains unless freed by the data source destroy function of the function descriptor set.

Returns DV_SUCCESS if the data buffer and free function are set successfully. Otherwise returns DV_FAILURE and
aborts the changes.

TdsSetFcnArg

Tds Functions T Routines

Sets an argument for a function associated with a data source.

BOOLPARAM
TdsSetFcnArg (

DATASOURCE ds,
V_FDS_FCN_ENUM fcntype,
int argindex,
int type,
ANYTYPE *valuep)

TdsSetFcnArg sets an argument for a specific type of function within the function descriptor set. ds is the data source
which is using the function descriptor set and fcntype is the type of function. Valid types of functions are listed in
TdsSetFcnByName.

argindex is the index within the argument list. If the index does not refer to a current argument, it must refer to a
new optional argument at the end of the list. valuep specifies the new value of the argument. type specifies the type
of the argument, which you can change only if the argument is an optional argument rather than a required argument
declared in the function descriptor set. Valid argument types are V_T_TYPE (text), V_L_TYPE (long), V_D_TYPE
(double), or V_DSV_TYPE (data source variable). To delete an optional argument, use TdsClrFcnArg.

Returns DV_SUCCESS if the arguments were set successfully. Returns DV_FAILURE if no such function type exists
in the function descriptor set, argindex does not refer to an existing argument, type conflicts with the defined type of
a required argument, or an error occurs.

TdsSetFcnByName

Tds Functions T Routines

Sets the function associated with a data source.

BOOLPARAM
TdsSetFcnByName (

DATASOURCE ds,
V_FDS_FCN_ENUM fcntype,
char *fcnname)

TdsSetFcnByName changes the function used by the data source for a specific type of function within the function
descriptor set. fcnname is the descriptive name of the function. ds is the data source which is using the function
descriptor set and fcntype is the type of function to change. Valid types of functions are:

V_FDS_FCN_OPEN The Open function, called by
TviOpenData, TdlOpenData, or
TdsOpenData.

V_FDS_FCN_READ The Read function, called by
TviReadData, TdlReadData, or
TdsReadData.

V_FDS_FCN_CLOSE The Close function, called by
TviCloseData, TdlCloseData, or
TdsCloseData.

V_FDS_FCN_WRITE The DS-Write function, called by
TdsWriteData.

V_FDS_FCN_DS_CREATE The DS-Create function, called by
TdsFdsCreate.

V_FDS_FCN_DS_DESTROY The DS-Destroy function, called by
TviDestroy, TdlDestroy, or
TdsDestroy.

V_FDS_FCN_DS_SAVE The DS-Save function, called by any of the
Tvi saving routines, TdlSave, or
TdsSave.

V_FDS_FCN_DS_RESTORE The DS-Restore function, called by any of
the Tvi loading routines, TdlLoad, or
TdsLoad.

Returns DV_SUCCESS if the function is successfully changed. Returns DV_FAILURE if an error occurs.

TdsSetFdsByName

Tds Functions T Routines

Sets the function descriptor set used by a data source.

BOOLPARAM
TdsSetFdsByName (

DATASOURCE ds,
char *fds_name)

TdsSetFdsByName changes the function descriptor set used by the data source, ds, to the function descriptor set
specified by fds_name. When the function descriptor set is changed, all function arguments are cleared. The new
functions and their arguments are set using defaults in the function descriptor set. Returns DV_SUCCESS if
successful. Returns DV_FAILURE and aborts the change if no function descriptor set is found with the specified
name or an error occurs.

TdsValid

Tds Functions T Routines

Determines if a data source is valid.

BOOLPARAM
TdsValid (

DATASOURCE ds)

TdsValid returns DV_SUCCESS if the data source is valid. Otherwise returns DV_FAILURE.

TdsWriteData

Tds Functions T Routines

Writes one iteration of data out to a target.

BOOLPARAM
TdsWriteData(

DATASOURCE ds)

TdsWriteData calls user-supplied write functions to write the data from the data source out to another part of the
application. Currently this routine works only for function data sources that have a user-supplied DS-Write function
assigned to them. In addition to the DS-Write function, the data source variables can each have their own DSV-Write
function. TdsWriteData calls the DS-Write function first, then calls each data source variable’s DSV-Write function.
Returns DV_FAILURE if ds is invalid or not open. Otherwise returns DV_SUCCESS.

Tdsv (Tdatasourcevariable)
Tdsv Functions T Routines

Manages data source variables (dsv). Data source variables are DataViews private types that maintain buffers for
storing data from data sources. A data source variable contains information about the type, size and dimensionality
of its data, and a name. Data source variables are usually bound to one or more variable descriptors (vdp). Data
sources variables are managed by data sources.

Data source variables in function data sources have special routines for handling function names, function
arguments, and auxiliary data. These routines are not useful for data source variables in other types of data sources.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tdsv Functions
TdsvAttachVdp Attaches a variable descriptor to a data source variable.
TdsvClone Copies a data source variable.
TdsvClrFcnArg Clears an argument for a function associated with a data source

variable.
TdsvCreate Creates a new data source variable.
TdsvDestroy Destroys a data source variable.
TdsvDetachVdp Detaches variable descriptor from a data source variable.
TdsvEditAttributes Edits data source variable attributes.
TdsvForEachVdp Traverses the variable descriptors bound to a data source variable.
TdsvGetAttributes Gets data source variable attributes.
TdsvGetAuxData Gets the auxiliary data buffer of a data source variable in a

function data source.
TdsvGetBuffer Gets data source variable buffer address.
TdsvGetDataSource Gets the data source of a data source variable.
TdsvGetFcnArg Gets an argument for a function associated with a data source

variable.
TdsvGetFcnArgCnt Gets the number of arguments for a function associated with a

data source variable.
TdsvGetFcnName Gets the descriptive name of a function associated with a data

source.
TdsvGetGlobalFlag Gets the global flag of a data source variable.
TdsvGetName Gets the name of a data source variable.
TdsvGetSize Gets the size of a data source variable.
TdsvGetType Gets the type of a data source variable.
TdsvReadData Reads data separately for one data source variable.
TdsvSetAuxData Assigns an auxiliary data buffer to a data source variable in a

function data source.
TdsvSetFcnArg Sets an argument for a function associated with a data source

variable.
TdsvSetFcnByName Sets the function associated with a data source variable.
TdsvSetGlobalFlag Sets the global flag for a data source variable.
TdsvSetInitialValue Sets the initial value for a constant data source variable.
TdsvSetTypedValue Sets a value in a data buffer.
TdsvSetValue Sets a double in a data buffer.
TdsvValid Determines if a data source variable is valid.
TdsvWriteData Writes data from one variable out to a target.

TdsvAttachVdp

Tdsv Functions T Routines

Attaches a variable descriptor to a data source variable.

BOOLPARAM
TdsvAttachVdp (

DSVAR dsvar,
VARDESC vdp)

TdsvAttachVdp binds the variable descriptor, vdp, to the data source variable, dsvar. More than one variable
descriptor can be bound to a data source variable, but each variable descriptor can only have one data source
variable attached to it. Changes the name of vdp to match the name of dsvar. Returns DV_FAILURE if it is passed an
invalid dsvar or vdp. Otherwise returns DV_SUCCESS.

TdsvClone

Tdsv Functions T Routines

Copies a data source variable.

DSVAR
TdsvClone (

DSVAR dsvar)

TdsvClone creates and returns a copy of a data source variable, dsvar. Returns DV_FAILURE if it is passed an
invalid dsvar. Does not clone the bindings between data source variables and dynamic objects.

TdsvClrFcnArg

Tdsv Functions T Routines

Clears an argument for a function associated with a data source variable.

BOOLPARAM
TdsvClrFcnArg (

DSVAR dsvar,
V_FDS_FCN_ENUM fcntype,
int argindex)

TdsvClrFcnArg clears an argument for a specific type of function within the function descriptor set. Only optional
arguments can be cleared. dsvar is the data source variable in the data source using the function descriptor set,
fcntype is the type of function, and argindex is the index within the argument list. Valid types of functions are listed
in TdsvSetFcnByName. Returns DV_SUCCESS if successful. Returns DV_FAILURE if argindex is too large,
argindex refers to a required argument, or no such function type is defined in the function descriptor set.

TdsvCreate

Tdsv Functions T Routines

Creates a new data source variable.

DSVAR
TdsvCreate (void)

TdsvCreate creates and returns a new data source variable. See also TdsCreateDsVar to create a data source variable
and add it to a data source in one step. Always use TdsCreateDsVar to create data source variables for a function
data source.

TdsvDestroy

Tdsv Functions T Routines

Destroys a data source variable.

BOOLPARAM
TdsvDestroy (

DSVAR dsvar)

TdsvDestroy destroys a data source variable, dsvar. Does nothing and returns DV_FAILURE if dsvar still has
dynamic objects attached to it or is invalid. Otherwise returns DV_SUCCESS.

TdsvDetachVdp

Tdsv Functions T Routines

Detaches variable descriptor from a data source variable.

BOOLPARAM
TdsvDetachVdp (

DSVAR dsvar,
VARDESC vdp)

TdsvDetachVdp detaches the variable descriptor, vdp, from the data source variable, dsvar. No data is displayed for
a dynamic object which uses vdp until the variable descriptor is attached to another data source variable, dsvar.
Returns DV_FAILURE if it is passed an invalid dsvar or vdp. Otherwise returns DV_SUCCESS. See also
TdsvAttachVdp.

TdsvEditAttributes

Tdsv Functions T Routines

Edits data source variable attributes.

BOOLPARAM
TdsvEditAttributes (

DSVAR dsvar,
char *name,
int type,
int rows,
int columns,
int delimiter)

TdsvEditAttributes sets the various attributes of a data source variable, dsvar. name should contain a new name
string. If name is NULL, a unique name is assigned in the form VAR:n, where n is an integer. type should contain a
flag indicating the variable type. Valid flags are listed below in TdsvGetType. rows and columns indicate the
number of dimensions for matrix variables. For scalar variables, set rows and columns to 1; for vectors, set columns
to 1 and rows to the dimension of the vector.

delimiter contains the delimiter character for text variables. For fixed-length text, set delimiter to NULL. The
following delimiters are allowed, in addition to any single character:

In the data file: delimiter Value:
<Return>, <NewLine>, or <LineFeed> ’\n’
<Tab> ’\t’
a double-quote before and after each string V_DOUBLE_QUO

TED
a single-quote before and after each string V_SINGLE_QUOT

ED
one or more double-quote between each pair of strings ’"’
one or more single-quote between each pair of strings ’’’

Any attribute set to NOCHANGE remains unchanged. Returns DV_FAILURE if it is passed an invalid dsvar.
Otherwise returns DV_SUCCESS. If the application accesses the buffer of the data source variable, call
TdsvGetBuffer after calling this routine because the buffer address may have changed.

Note that this routine not only changes the name of the data source variable specified, but also applies the same new
name to every variable descriptor that refers to this data source variable by internally calling VPvdvarname on every
variable descriptor in the data source variable’s reference list.

TdsvForEachVdp

Tdsv Functions T Routines

Traverses the variable descriptors bound to a data source variable.

ADDRESS
TdsvForEachVdp (

DSVAR dsvar,
TDSVFOREACHVDPFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

VARDESC vdp,
ADDRESS argblock)

TdsvForEachVdp traverses the list of variable descriptors bound to the data source variable, dsvar, and calls fun for
each variable descriptor. Continues the traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the
traversal when fun returns a non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the
return value of the last call to fun.

fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have two parameters: the variable descriptor being processed, and the argument or argument block
required by the function. The argument can be NULL. If more than one argument is required, the argument block
should be a pointer to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1. to perform a particular operation on each variable descriptor attached to dsvar, or
2. to find a particular variable descriptor attached to dsvar.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return V_CONTINUE_TRAVERSAL for ADDRESS if the variable
descriptor is not found. Otherwise it should return the variable descriptor for ADDRESS.

Note: You should not alter the list by adding, deleting, or reordering the variable descriptors during traversal.

For an example of a typical function, see the example under TdrForEachNamedObject. Note that the example
demonstrates the use of a function with three parameters, but TdsvForEachVdp requires only two.

TdsvGetAttributes

Tdsv Functions T Routines

Gets data source variable attributes.

BOOLPARAM
TdsvGetAttributes (

DSVAR dsvar,
char **name,
int *type,
int *rows,
int *columns,
char *delimiter)

Error! Reference source not found.TdsvGetAttributes gets the various attributes of a data source variable, dsvar.
name gets a pointer to the name string, type contains a flag indicating the variable type. Valid flags are listed below
in TdsvGetType. rows and columns contains the number of dimensions for matrix variables, and delimiter contains
the delimiter character for text variables. NULL attributes are interpreted as setting the value to 0. Returns
DV_FAILURE if it is passed an invalid dsvar. Otherwise returns DV_SUCCESS.

TdsvGetAuxData

Tdsv Functions T Routines

Gets the auxiliary data buffer of a data source variable in a function data source.

ADDRESS
TdsvGetAuxData (

DSVAR dsvar)

TdsvGetAuxData gets the address of the auxiliary data buffer from the data source variable, dsvar. The data buffer is
used to store data for a function descriptor set. For more information, see TdsvSetAuxData. Returns the address if the
query is successful. Returns NULL if there is no address, if the data buffer was freed, or if an error occurs.

TdsvGetBuffer

Tdsv Functions T Routines

Gets data source variable buffer address.

ADDRESS
TdsvGetBuffer (

DSVAR dsvar)

TdsvGetBuffer queries the data source variable, dsvar, for the address of its data buffer. Returns the ADDRESS of the
buffer. Returns DV_FAILURE if it is passed an invalid data source variable. To make sure the correct data source
variable buffer address is being used, call this routine after a call to TdsvEditAttributes. For a text variable with
delimiter, the buffer address may also change after reading new data, so call this routine after calling TviReadData,
TdlReadData, or TdsReadData.

TdsvGetDataSource

Tdsv Functions T Routines

Gets the data source of a data source variable.

DATASOURCE
TdsvGetDataSource (

DSVAR dsvar)

TdsvGetDataSource returns the data source to which the data source variable, dsvar, belongs. Returns NULL if it is
passed an invalid data source variable or if the data source variable does not currently belong to any data source.

TdsvGetFcnArg

Tdsv Functions T Routines

Gets an argument for a function associated with a data source variable.

BOOLPARAM
TdsvGetFcnArg (

DSVAR dsvar,
V_FDS_FCN_ENUM fcntype,
int argindex,
int *typep,
ANYTYPE *valuep)

TdsvGetFcnArg gets an argument for a specific type of function within the function descriptor set. dsvar is the data
source variable in a function data source, fcntype is the type of function to query, and argindex is the index within
the argument list. Valid types of functions are listed in TdsvSetFcnByName.

Returns the argument value in valuep and the type of argument in typep. Valid argument types are:

V_T_TYPE text string
V_L_TYPE LONG
V_D_TYPE double
V_DSV_TYPE DSVAR

Returns DV_SUCCESS if the query is successful. Returns DV_FAILURE if no argument corresponds to the index, no
such function type is defined in the function descriptor set, or if an error occurs.

TdsvGetFcnArgCnt

Tdsv Functions T Routines

Gets the number of arguments for a function associated with a data source variable.

BOOLPARAM
TdsvGetFcnArgCnt (

DSVAR dsvar,
V_FDS_FCN_ENUM fcntype,
int *req_arg_cntp,
int *opt_arg_cntp)

Error! Reference source not found.TdsvGetFcnArgCnt gets the count of the required and optional arguments for a
specific type of function within the function descriptor set. dsvar is the data source variable which is using the
function and fcntype is the type of function to query. Valid types of functions are listed in TdsvSetFcnByName.

Returns the number of required arguments in req_arg_cntp and the number of optional user-defined arguments in
opt_arg_cntp. Returns DV_SUCCESS if the query for the argument count is successful. Returns DV_FAILURE if no
such function type is defined in the function descriptor set or if an error occurs.

TdsvGetFcnName

Tdsv Functions T Routines

Gets the descriptive name of a function associated with a data source.

char *
TdsvGetFcnName (

DSVAR dsvar,
V_FDS_FCN_ENUM fcntype)

TdsvGetFcnName gets the name of the function associated with the data source variable. dsvar is the data source
variable in a function data source. fcntype is the type of function to query. Valid types of functions are listed in
TdsvSetFcnByName. Returns the descriptive name of the function if it exists. Returns NULL if there is no name or
if an error occurs.

TdsvGetGlobalFlag

Tdsv Functions T Routines

Gets the global flag of a data source variable.

int
TdsvGetGlobalFlag (

DSVAR dsvar)

TdsvGetGlobalFlag returns the global flag of the data source variable, dsvar. The global flag controls whether or not
the data source variable, if referenced by a subdrawing, can be mapped to another data source variable in the higher-
level view. See VOsubdrawing for more information on mapping. Returns DV_FAILURE if dsvar is invalid.
Otherwise returns the global flag. Valid values for the returned flag are:

V_GLOBAL Can be mapped.
V_LOCAL Cannot be mapped.

TdsvGetName

Tdsv Functions T Routines

Gets the name of a data source variable.

char *
TdsvGetName (

DSVAR dsvar)

TdsvGetName returns the name of the data source variable, dsvar. This is a pointer to an internal variable which
should not be modified. Returns DV_FAILURE if it is passed an invalid dsvar.

TdsvGetSize

Tdsv Functions T Routines

Gets the size of a data source variable.

int
TdsvGetSize (

DSVAR dsvar,
int *rows,
int *columns)

TdsvGetSize queries the data source variable, dsvar, for the size of its data buffer. Returns the total number of bytes
in the current buffer. Returns DV_FAILURE if it is passed an invalid dsvar. The function also gets the number of
rows and columns in dsvar. A scalar variable contains 1 row and 1 column. A vector variable has columns set to 1
and rows set to the size of the vector.

TdsvGetType

Tdsv Functions T Routines

Gets the type of a data source variable.

int
TdsvGetType (

DSVAR dsvar)

TdsvGetType returns a flag indicating the type of the data source variable, dsvar. Possible flag values are:

Flag Data Type Size in bits
V_C_TYPE char 8
V_UC_TYPE unsigned char,

UBYTE
8

V_S_TYPE short 16
V_US_TYPE unsigned short 16
V_L_TYPE int, LONG 32
V_UL_TYPE unsigned int, ULONG 32
V_F_TYPE float 32 (or 64 for some systems)
V_D_TYPE double 64 (or 128 for some systems)
V_T_TYPE NULL-terminated

string
no set size

If the format of the data source is ASCII, the only valid types are V_T_TYPE and V_F_TYPE. If the format of the
data source is binary, then all types are valid. Returns DV_FAILURE if it is passed an invalid dsvar.

TdsvReadData

Tdsv Functions T Routines

Reads data separately for one data source variable.

BOOLPARAM
TdsvReadData(

DSVAR dsvar)

TdsvReadData reads data for only one data source variable, in contrast with TdsReadData, which reads data for all
the variables in a data source. Call this routine when you need to update a data source variable outside the normal
read cycle. This routine is most useful for variables in function or memory data sources. For file and process data
sources that contain several variables in a particular order, you must read the individual variables in the formatted
order. Returns DV_FAILURE if the data source is invalid, not open, or has reached the end of the file. Otherwise
returns DV_SUCCESS.

TdsvSetAuxData

Tdsv Functions T Routines

Assigns an auxiliary data buffer to a data source variable in a function data source.

BOOLPARAM
TdsvSetAuxData (

DSVAR dsvar,
ADDRESS data,
TDSVFREEFUNPTR freefcn)

void
freefcn (

ADDRESS data)

TdsvSetAuxData associates a user-defined auxiliary data buffer, data, and its free function, freefcn, with the data
source variable, dsvar. The auxiliary data buffer is created and maintained by the program for use by the functions in
a function descriptor set. Setting data to NULL clears the data buffer.

The free function is optional. If it is specified, it is called automatically by TviCloseData, TdlCloseData, and
TdsCloseData. The free function frees the buffer and clears the address. If a free function is not specified, the
buffer remains unless freed by the data source variable or data source destroy function of the function descriptor set.

Returns DV_SUCCESS if the data buffer and free function are set successfully. Otherwise returns DV_FAILURE and
aborts the changes.

TdsvSetFcnArg

Tdsv Functions T Routines

Sets an argument for a function associated with a data source variable.

BOOLPARAM
TdsvSetFcnArg (

DSVAR dsvar,
V_FDS_FCN_ENUM fcntype,
int argindex,
int type,
ANYTYPE *valuep)

Error! Reference source not found.TdsvSetFcnArg sets an argument for a specific type of function within the
function descriptor set. dsvar is the data source variable in a function data source and fcntype is the type of function.
Valid types of functions are listed in TdsvSetFcnByName.

argindex is the index within the argument list. If the index does not refer to a current argument, it must refer to a
new optional argument at the end of the list. valuep specifies the new value of the argument. type specifies the type
of the argument, which you can change only if the argument is an optional argument rather than a required argument
declared in the function descriptor set. Valid argument types are V_T_TYPE (text), V_L_TYPE (long), V_D_TYPE
(double), or V_DSV_TYPE (data source variable). To delete an optional argument, use TdsvClrFcnArg.

Returns DV_SUCCESS if the argument was successfully set. Returns DV_FAILURE if no such function exists in the
function descriptor set, argindex does not refer to an existing argument, type conflicts with the defined type of a
required argument, or an error occurs.

TdsvSetFcnByName

Tdsv Functions T Routines

Sets the function associated with a data source variable.

BOOLPARAM
TdsvSetFcnByName (

DSVAR dsvar,
V_FDS_FCN_ENUM fcntype,
char *fcnname)

TdsvSetFcnByName changes the function used by the data source variable for a specific type of function within the
function descriptor set. fcnname is the descriptive name of the function. dsvar is the data source variable in a
function data source and fcntype is the type of function to change. Valid types of functions are:

V_FDS_FCN_SELECT The Select function, called by TviReadData,
TdlReadData, or TdsReadData for each data
source variable in a function data source, or by
TdsvReadDatafor a particular data source variable.

V_FDS_FCN_SELECT_WRITE The DSV-Write function, called by TdsWriteDatafor
each data source variable in a function data source,
or by TdsvWriteData for a particular data source
variable.

V_FDS_FCN_DSV_CREATE The DSV-Create function, called by TdsCreateDsVar.
V_FDS_FCN_DSV_DESTROY The DSV-Destroy function, called by TdsvDestroy.

Returns DV_SUCCESS if the function is successfully changed. Returns DV_FAILURE if an error occurs.

TdsvSetGlobalFlag

Tdsv Functions T Routines

Sets the global flag for a data source variable.

BOOLPARAM
TdsvSetGlobalFlag (

DSVAR dsvar,
int flag)

TdsvSetGlobalFlag sets the value of the global flag for a data source variable, dsvar, to flag. The global flag controls
whether or not the data source variable, if referenced by a subdrawing, can be mapped to another data source
variable in the higher-level view. See VOsubdrawing for more information on mapping. Returns DV_FAILURE if
dsvar is invalid. Otherwise returns DV_SUCCESS. Valid values for flag are:

V_GLOBAL Can be mapped.
V_LOCAL Cannot be mapped.

TdsvSetInitialValue

Tdsv Functions T Routines

Sets the initial value for a constant data source variable.

int
TdsvSetInitialValue(

DSVAR dsvar,
double initial_value)

TdsvSetInitialValue sets the initial value for a constant data source variable. It always returns DV_SUCCESS.

TdsvSetTypedValue

Tdsv Functions T Routines

Sets a value in a data buffer.

BOOLPARAM
TdsvSetTypedValue (

DSVAR dsvar,
int valtype,
ADDRESS valptr,
LONG row,
LONG column)

Error! Reference source not found.TdsvSetTypedValue sets an element, identified by row and column, in the data
buffer of the data source variable, dsvar, to the value pointed to by valptr. row and column are 0-based indices.
valtype is a flag that indicates the type of datum pointed to. See TdsvGetType above for valid flag values for valtype.
TdsvSetTypedValue treats valptr as a pointer to a value and puts the value in the dsvar’s buffer, recasting the value
to match the datum type of dsvar.

For example, if valptr points to 10.0, valtype is V_F_TYPE, and the dsvar is V_C_TYPE, the value 10 is put into the
first byte of the dsvar’s buffer. If valtype is V_T_TYPE and dsvar is V_T_TYPE, the routine copies as much of the
string as fits into the dsvar buffer, starting at the position defined by row and column. Note that text dsvars are
usually one dimension, so row is usually one. For scalar data, both row and column are zero.

Returns DV_FAILURE if dsvar, valtype, row, or column is invalid. Otherwise returns DV_SUCCESS. When the data
type is double, TdsvSetValue can be used instead of this routine.

TdsvSetValue

Tdsv Functions T Routines

Sets a double in a data buffer.

BOOLPARAM
TdsvSetValue (

DSVAR dsvar,
double val,
LONG row,
LONG column)

Error! Reference source not found.TdsvSetValue sets an element in the data buffer of the data source variable to
the specified value, val. When necessary, the value, which is passed as a double, is converted to match the data type
of dsvar. The position of the element is identified by row and column, which are 0-based indices. Returns
DV_FAILURE if dsvar, row, or column is invalid. Otherwise returns DV_SUCCESS.

TdsvValid

Tdsv Functions T Routines

Determines if a data source variable is valid.

BOOLPARAM
TdsvValid (

DSVAR dsvar)

TdsvValid returns DV_SUCCESS if the data source variable is valid. Otherwise returns DV_FAILURE.

TdsvWriteData

Tdsv Functions T Routines

Writes data from one variable out to a target.

BOOLPARAM
TdsvWriteData(

DSVAR dsvar)

TdsvWriteData calls a user-supplied write function to write the data from a data source variable out to another part
of the application. Currently this routine works only for function data source variables that have a DSV-Write
function assigned to them.

If you want to write data from all the variables in the function data source, you do not need to call this routine.
Instead, you can call TdsWriteData by itself.

Returns DV_FAILURE if the data source is invalid or not open. Otherwise returns DV_SUCCESS.

Tlo (Tlocationobject)
Tlo Functions T Routines

Manages location objects. Location objects contain information about events generated by the graphical locator
device. TloPoll, which returns a location object, is used only for simple event handling. For more information on
manipulating location objects, including window system extension event handling, see VOlocation.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tlo Functions
TloGetSelectedDrawport Gets the drawport selected by the locator event.
TloGetSelectedObject Gets the object selected by the locator event.
TloGetSelectedObjectName Gets the name of the selected object.
TloGetSelectedSubObject Gets the selected object or subobject in a subdrawing.
TloGetSelectedSubObjectName Gets the name of selected object or subobject in a subdrawing.
TloPoll Returns location object of next locator event in the event queue.
TloSetup Sets up the values of a location object.
TloWinEventSetup Sets up the values and WINEVENT structure of a location object.

TloGetSelectedDrawport

Tlo Functions T Routines

Gets the drawport selected by the locator event.

DRAWPORT
TloGetSelectedDrawport (

OBJECT lo)

TloGetSelectedDrawport queries the location object, lo, returned by VOloWinEventPoll. Returns NULL if the cursor
isn’t in any drawport. Otherwise returns the drawport selected by the locator cursor.

TloGetSelectedObject

Tlo Functions T Routines

Gets the object selected by the locator event.

OBJECT
TloGetSelectedObject (

OBJECT lo)

TloGetSelectedObject queries the location object, lo, returned by VOloWinEventPoll. Returns NULL if the cursor
isn’t pointing to any visible object. Otherwise returns the object selected by the locator cursor. If the pick is in a
subdrawing, returns the subdrawing object

TloGetSelectedObjectName

Tlo Functions T Routines

Gets the name of the selected object.

char *
TloGetSelectedObjectName (

OBJECT lo)

TloGetSelectedObjectName queries the location object, lo, returned by VOloWinEventPoll. Returns NULL if the
cursor isn’t pointing to a visible named object. Otherwise returns the name of the object selected by the locator
cursor.

This routine searches the drawing for the first named object at the cursor location. This object may be obscured by
another object if the object in front is unnamed. Therefore, TloGetSelectedObject and TloGetSelectedObjectName
may return different selected objects when called on the same location object.

TloGetSelectedSubObject

Tlo Functions T Routines

Gets selected object or subobject in a subdrawing.

OBJECT
TloGetSelectedSubObject (

OBJECT lo)

TloGetSelectedSubObject works like TloGetSelectedObject, but for picks inside subdrawings,
TloGetSelectedSubObject returns the selected object within the subdrawing. Nested subdrawings are traversed to the
lowest level. Returns NULL if no visible object is selected.

TloGetSelectedSubObjectName

Tlo Functions T Routines

Gets name of selected object or subobject in a subdrawing.

char *
TloGetSelectedSubObjectName (

OBJECT lo)

TloGetSelectedSubObjectName works like TloGetSelectedObjectName, but for picks inside subdrawings,
TloGetSelectedSubObjectName returns the name of the selected object within the subdrawing. Nested subdrawings
are traversed to the lowest level. Returns NULL if no visible object is selected.

TloPoll

Tlo Functions T Routines

Returns location object of next locator event in the event queue.

OBJECT
TloPoll (

int poll_type)

TloPoll polls the locator device (mouse, tablet, etc.) attached to the current display device. Returns a corresponding
location object which describes the position of the cursor and any key press that has occurred. For additional
information on location objects, see VOlocation. The flag, poll_type, controls the type of polling. The possible
values for the flag are:

LOC_POLL Returns the current location of the cursor and the
last key press. If no selection was made, the last
keypress is NULL. This flag makes TloPoll
always return a valid LOCATION.

PICK_POLL Determines whether the user has made a selection.
Returns a valid location object if one has been
selected. Returns NULL if no selection was made.

WAIT_PICK Waits for the user to make a selection. Returns the
current location of the cursor and the last
keypress.

WAIT_CHANGE Waits for the user to move the cursor or make a
selection. Returns the current location of the
cursor and the last keypress.

Note that TloPoll is not appropriate for applications that require polling for a wider range of event types. For
example, you cannot use TloPoll when you have button input objects, since they require button and key release
events. For greater control over which events are polled, use VOscWinEventMask to set an event mask and
VOloWinEventPoll or VOscWinEventPoll to poll. Using TloPoll after setting an event mask is not recommended
since TloPoll resets the event mask internally.

TloSetup

Tlo Functions T Routines

Sets up the values of a location object.

BOOLPARAM
TloSetup (

OBJECT lo,
int key,
DV_POINT *spt,
OBJECT screen,
DRAWPORT dp)

TloSetup sets a location object’s key press, screen and drawport values, and location point in screen coordinates.
This is used by the application program to create a location object as if it had been returned from TloPoll. If dp is
NULL, it finds the top drawport that the screen point is in. Otherwise it associates the location object with the
drawport. If screen is NULL, it assumes the screen is associated with the drawport. If both screen and dp are NULL,
it assumes the current screen. Returns DV_FAILURE if spt is NULL. Otherwise returns DV_SUCCESS.

If your application runs on a window system, use TloWinEventSetup instead. It sets the key information accurately
in cases where key and keysym values differ.

TloWinEventSetup

Tlo Functions T Routines

Sets up the values and WINEVENT structure of a location object.

BOOLPARAM
TloWinEventSetup (

OBJECT lo,
WINEVENT *we,
OBJECT screen,
DRAWPORT dp)

TloWinEventSetup sets a location object’s WINEVENT structure, screen, and drawport values to those passed as
parameters. It also calculates the key press, world coordinate, and screen coordinates based on the values in the
fields of the WINEVENT structure passed in. You can use this routine to create a location object as though it had
been returned from VOscWinEventPoll or VOloWinEventPoll. If dp is NULL, the routine finds the top drawport at
the location given in the WINEVENT field loc. If screen is NULL, it assumes the screen associated with the
drawport. If both screen and dp are NULL, it assumes the current screen. You must set the type, loc, and button or
firstchar fields of the WINEVENT structure you pass in. If the event type is V_BUTTONPRESS,
V_BUTTONRELEASE, V_KEYPRESS, or V_KEYRELEASE, the key field is set; otherwise the key field is not set.
You can also set other fields of the WINEVENT structure. Currently always returns DV_SUCCESS.

Tob (Tobject)
Tob Functions T Routines

Access functions that work on objects that have subobjects. These include drawing objects, deque objects, and
graphical objects. The VOob routines also act on general objects, and the VO routines act on specific objects.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
 Tdr Tob Tvi
Tob Functions
TobForEachSubobject Traverses all subobjects in an object.
TobForEachVdp Traverses all variable descriptors in an object.
TobWasSelected Determines if an object was selected.

TobForEachSubobject

Tob Functions T Routines

Traverses all subobjects in an object.

ADDRESS
TobForEachSubobject (

OBJECT object,
TOBFOREACHSUBOBJFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

OBJECT subobject,
ADDRESS argblock)

TobForEachSubobject traverses all subobjects in the object and calls fun for each subobject. For example, if the
object is a drawing, fun is called for each graphical object in the drawing. If the object is a graphical object such as
an arc, fun is called for each control point. If the object is a subdrawing, TobForEachSubobject does not traverse
objects in the subdrawing or any nested subdrawings. For a complete description of object subobjects, see the VO
Routines chapter in this manual.

TobForEachSubobject continues the traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the
traversal when fun returns a non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the
return value of the last call to fun.

fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have two parameters: the subobject being processed, and the argument or argument block required by the
function. The argument can be NULL. If more than one argument is required, the argument block should be a pointer
to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1. to perform a particular operation on each subobject in an object, or
2. to find a particular subobject.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return V_CONTINUE_TRAVERSAL for ADDRESS if the subobject is not
found. Otherwise it should return the ADDRESS of the subobject.

Note: You should not alter the object by adding, deleting, or reordering its subobjects during traversal.

For an example of a typical function, see the example under TdrForEachNamedObject. Note that the example
demonstrates the use of a function with three parameters, but TobForEachSubobject requires only two.

TobForEachVdp

Tob Functions T Routines

Traverses all variable descriptors in an object.

ADDRESS
TobForEachVdp (

OBJECT object,
TOBFOREACHVDPFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

OBJECT data_obj,
VARDESC vdp,
ADDRESS argblock)

TobForEachVdp traverses all variable descriptors in the object and calls fun for each variable descriptor pointer. If
the object is a subdrawing, traverses all objects in the subdrawing and all levels of nested subdrawings for the
variable descriptors of any embedded dynamics. Continues the traversal while fun returns NULL or
V_CONTINUE_TRAVERSAL. Aborts the traversal when fun returns a non-NULL ADDRESS or
V_HALT_TRAVERSAL. The return value of the traversal is the return value of the last call to fun.

For a description of fun, see TobForEachSubobject. Note that TobForEachSubobject traverses subobjects, passing
two parameters to fun. TobForEachVdp traverses variable descriptors, passing three parameters to fun: the data
object, the variable descriptor, and the argument block.

The data_obj parameter is the object that the variable descriptor belongs to. In the case of graphs or input objects,
data_obj is the data group object (dg) or input object (in). In the case of dynamic control objects, data_obj is the
threshold table object (tt) if there is one, or the variable descriptor object (vd) otherwise.

TobWasSelected

Tob Functions T Routines

Determines if an object was selected.

OBJECT
TobWasSelected (

OBJECT object,
OBJECT lo)

TobWasSelected determines if an object was selected by the location object, lo. Returns object if it was selected.
Otherwise returns NULL. In some cases, an object drawn in an overlapping drawport might obscure the object you
were initially selecting with lo. Therefore, the object being checked must have been drawn in the drawport returned
by TloGetSelectedDrawport, or the function is not defined.

Tproto
Tproto Functions T Routines

Example
Displays prototypes created in DV-Draw.

These routines let you activate a prototype within a DV-Tools program. The prototype runs exactly as it does in the
Prototype Menu of DV-Draw or when using DVproto, but you can control its environment.

To define a prototyping environment, you must specify the name of your top view, the screen you want to run the
prototype in, and the drawport attributes for displaying the views. The drawport attributes include where on the
screen you want to display the views and what portion of the views you want visible. They also include a stretch flag
that controls whether TdpCreate or TdpCreateStretch is used to create the drawport. For more details, see
Tdrawport.

You can invoke a prototype from DV-Tools in two ways:

TprotoRun invokes a prototype like using the DVproto script. You don’t return from this call until a quit rule or
window quit event occurs. This method is useful when you want the prototype to be the only active function.

You can also call several Tproto functions within your application to invoke a prototype. This method gives you the
most control; you can have several active prototypes, and you can do your own event polling and define your own
update rates. When running a prototype this way, you must set up and save the prototype environment information in
the PROTO_ENV private structure. Use the following steps:

To define a PROTO_ENV structure, call TprotoInit.
To process a location object, call TprotoHandleInput.
To update dynamics, call TprotoUpdate.
To stop the prototype arbitrarily or to clean up after a quit rule or window quit event, call TprotoCleanup.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tproto Functions
TprotoCleanup Cleans up after running a prototype.
TprotoHandleInput Handles events for a prototype.
TprotoInit Initializes the prototype environment.
TprotoRedraw Redraws a prototype.
TprotoReset Resets a prototype.
TprotoRun Runs a prototype like using the DVproto script.
TprotoUpdate Updates the dynamics for the prototype.

TprotoCleanup

Tproto Functions T Routines

Example
Cleans up after running a prototype.

void
TprotoCleanup (

PROTO_ENV proto_env)

TprotoCleanup cleans up the prototyping environment. You must call TprotoCleanup to clean up if you called
TprotoInit to start the prototype. For example, call TprotoCleanup after TprotoHandleInput returns
V_TPROTO_QUIT.

TprotoHandleInput

Tproto Functions T Routines

Example
Handles events for a prototype.

int
TprotoHandleInput (

PROTO_ENV proto_env,
OBJECT location)

TprotoHandleInput handles events for the prototyping environment. location is the location object containing the
event. You should determine that the location object is not associated with another screen or drawport before passing
it.

Handles resize and expose events by calling TprotoReset and TprotoRedraw. Note that if the prototype screen
contains other drawports, you should handle the event by calling TprotoReset and TprotoRedraw for the
prototype, and TdpRedraw for each of the other drawports. Processes rules in the prototype and executes actions
as specified by the event and condition. Also calls VUerHandleLocEvent internally to update input objects. Note
that event requests posted by other parts of the application may be serviced when you call this routine because of the
internal call to VUerHandleLocEvent.

Returns DV_SUCCESS if the location object was used by a rule, input object, or event request. Returns
V_TPROTO_QUIT for a quit rule action or quit window event. Otherwise returns DV_FAILURE. You should check
this return value to determine whether the location object was used; if not, you may have to handle the location
object explicitly.

TprotoInit

Tproto Functions T Routines

Example
Initializes the prototype environment.

PROTO_ENV
TprotoInit (

OBJECT screen,
char *top_view,
DRAWPORT_ATTRIBUTES *dp_atts)

TprotoInit initializes a prototyping environment and returns a PROTO_ENV structure. It also loads and displays the
top_view into a drawport defined by dp_atts. It preloads views according to the DVPRELOAD configuration
variable. This routine sets the cursor to the arrow cursor, V_ACTIVE_CURSOR. Returns NULL if the top view
cannot be loaded.

TprotoRedraw

Tproto Functions T Routines

Example
Redraws a prototype.

void
TprotoRedraw (

PROTO_ENV proto_env)

TprotoRedraw redraws the prototype. If you are handling your own window events and the screen contains more
than one drawport, call this function after a V_RESIZE event and after calling TprotoReset, or after a V_EXPOSE
event. Note that if the prototype screen contains other drawports, you should also call TdpRedraw for each of the
other drawports. TprotoRedraw also calculates new rasters for popup and overlay objects. Redraws only the
prototype drawport, not the whole screen. This function is called for you by TprotoHandleInput when its location
object contains a V_RESIZE or V_EXPOSE event.

TprotoReset

Tproto Functions T Routines

Example
Resets a prototype.

void
TprotoReset (

PROTO_ENV proto_env)

TprotoReset resets the prototype. Should be called after a V_RESIZE if the screen contains more than one drawport.
This function is called for you by TprotoHandleInput when its location object contains a V_RESIZE event.

TprotoRun

Tproto Functions T Routines

Example
Runs a prototype like using the DVproto script.

void
TprotoRun (

OBJECT screen,
char *top_view,
DRAWPORT_ATTRIBUTES *dp_atts)

TprotoRun runs a prototype just like using DVproto. It handles user events and updating the screen. This function
doesn’t return until a quit is generated through either a rule or a window event.

TprotoUpdate

Tproto Functions T Routines

Example
Updates the dynamics for the prototype.
void
TprotoUpdate (

PROTO_ENV proto_env)

TprotoUpdate calls TdpDrawNext to update the visible objects in the prototype. This function does not update
when a stop dynamics rule is active.

Tproto Example
The following code fragment, adapted from proto_multi.c, shows how to run two prototypes in two separate
windows.

/* Initialize the window and prototype environments. */
for (i=0; i<MAXWINS; i++)

{
/* Create the windows and set up polling. */
screen[i] = SetupScreen (i);

/* Initialize the prototype environment to use a stretched drawport. */
dp_atts.vvp = NULL;
dp_atts.wvp = &whole_world;
dp_atts.stretch_flag = (DV_BOOL)YES;
proto_env[i] = TprotoInit (screen[i], view_name[i], &dp_atts);
}

. . .

/* Main loop. Handle events and update dynamics. */
while (quit_status == NO)

{
/* Handle events. */
if (location = VOloWinEventPoll (V_NO_WAIT))

{
VOscSelect (current_screen =

VOloScreen (location));
i = (current_screen == screen[0]) ? 0 : 1;
if (TprotoHandleInput (proto_env[i], location) == V_TPROTO_QUIT)

quit_status = YES;
}

 /* Update each prototype’s dynamics if we didn’t quit. */
if (quit_status != NO)

{
for (i=0; i<MAXWINS; i++)

TprotoUpdate (proto_env[i]);
}

}
/* End of main loop. */

. . .

/* Clean up. */
for (i=0; i<MAXWINS; i++)

{
VOscSelect (screen[i]);
TprotoCleanup (proto_env[i]);
TscClose (screen[i]);
}

Tsc (Tscreen)
Tsc Functions T Routines

T level routines for managing screen objects (sc). These routines perform higher-level operations on screen objects
than the VOsc routines. In particular, most of them take a screen object as a parameter rather than operating on the
current screen. The screen object is the highest level object in the DV-Tools hierarchy of data structures. It
represents the entire display device, or window in a windowing system, and maintains a list of the drawports (dp) it
contains.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tsc Functions
TscClose Closes a screen object’s associated display device.
TscCloseCurrentScreen Closes the current display screen.
TscDefBackcolor Sets the default background color for the screen.
TscDefForecolor Sets the default foreground color for the screen.
TscDrawBackground Repairs all or part of the screen by drawing with the background color.
TscErase Erases the entire screen by drawing with the background color.
TscFindDrawport Finds out which drawport a given point is in.
TscFlush Flushes a screen object’s associated display device.
TscFlushCurrentScreen Flushes output to the screen.
TscOpen Opens a device as a screen object.
TscOpenError Checks for any case where TscOpen might return a NULL screen object.
TscOpenRemoteWindow Specifies a remote display connection pointer.
TscOpenSet Opens a device using specified attributes.
TscOpenWindow Opens a window as a screen object.
TscPrintEnd Ends printing on Microsoft Windows systems.
TscPrintSet Sets up printer attributes on Microsoft Windows systems.
TscPrintStart Starts printing on Microsoft Windows systems.
TscRedraw Redraws all drawports in the screen.
TscReset Resets all screen drawports after window resizing.
TscSetCurrentScreen Sets currently active screen.

TscClose

Tsc Functions T Routines

Closes a screen object’s associated display device.

BOOLPARAM
TscClose (

OBJECT screen)

TscClose closes the display device associated with the given screen object, screen, and any attached drawports,
freeing the device for later calls to TscOpen or TscOpenWindow. Returns DV_FAILURE if screen is NULL.
Otherwise returns DV_SUCCESS.

TscCloseCurrentScreen

Tsc Functions T Routines

Closes the current display screen.

BOOLPARAM
TscCloseCurrentScreen (void)

TscCloseCurrentScreen flushes pending output to the currently active screen, closes polling, and closes the screen.
Currently, this routine always returns DV_SUCCESS.

TscDefBackcolor

Tsc Functions T Routines

Sets the default background color for the screen.

OBJECT
TscDefBackcolor (

OBJECT screen,
OBJECT color)

TscDefBackcolor sets the screen object’s default background color. Returns its original default background color. If
screen is NULL, returns the current background color. The initial default background color of a screen is NULL.

TscDefForecolor

Tsc Functions T Routines

Sets the default foreground color for the screen.

OBJECT
TscDefForecolor (

OBJECT screen,
OBJECT color)

TscDefForecolor sets the screen object’s default foreground color. Returns its original default foreground color. If
screen is NULL, returns the current foreground color. The initial default foreground color of a screen is NULL.

TscDrawBackground

Tsc Functions T Routines

Repairs all or part of the screen by drawing with the background color.

BOOLPARAM
TscDrawBackground (

OBJECT screen,
RECTANGLE *svp)

TscDrawBackground draws over the portion of the screen specified by svp using the default background color. This
has the effect of erasing the specified region. If svp is NULL, draws over the entire screen. Currently, this routine
always returns DV_SUCCESS.

TscErase

Tsc Functions T Routines

Erases the entire screen by drawing with the background color.

BOOLPARAM
TscErase (

OBJECT screen)

TscErase erases the screen by drawing over it using the default background color. If the screen’s default background
color is NULL, draws using color index 0. This color is usually black for color devices and white for black-and-
white devices. Input objects are erased from the screen, but they remain active, responding to input, unless they are
erased explicitly using TdpEraseObject. Currently, this routine always returns DV_SUCCESS.

TscFindDrawport

Tsc Functions T Routines

Finds out which drawport a given point is in.

DRAWPORT
TscFindDrawport (

OBJECT screen,
DV_POINT *spt)

TscFindDrawport returns the drawport containing a given screen coordinate point structure, spt. Returns NULL if
the point is not in any drawport.

TscFlush

Tsc Functions T Routines

Flushes a screen object’s associated display device.

BOOLPARAM
TscFlush (

OBJECT screen)

TscFlush flushes any pending output to the given screen. Currently, this routine always returns DV_SUCCESS.

TscFlushCurrentScreen

Tsc Functions T Routines

Flushes output to the screen.

BOOLPARAM
TscFlushCurrentScreen (void)

TscFlushCurrentScreen flushes any pending output to the current or active screen. Currently, this routine always
returns DV_SUCCESS.

TscOpen

Tsc Functions T Routines

Opens a device as a screen object.

OBJECT
TscOpen (

char *device,
char *clutfile)

TscOpen opens the device, device, giving it the specified color lookup table, clutfile, and returns its associated screen
object. If device is NULL, the value (if set) of the configuration variable DVDEVICE is used. If clutfile is NULL, the
value (if set) of the configuration variable DVCOLORTABLE is used. Otherwise, the default color lookup table is
used. The clutfile format is a sequence of ASCII triples consisting of the red, green, and blue components of the
color lookup table entries, with one line per entry in the table. The color components should be in the range [0,255].
A red component of -1 means that the entry should remain unchanged. Unspecified indices remain unchanged.
Returns DV_FAILURE if it cannot open device or clutfile.

TscOpenError

Tsc Functions T Routines

Checks for any case where TscOpen might return a NULL screen object.

INT
TscOpenError (void)

TscOpenError checks for any case where TscOpen might return a NULL screen object. If TscOpen returns a NULL
screen object, such as when the software protection check fails, TscOpen no longer returns a valid screen object.
This means that the system may open the window, do the protection check, and then immediately close the window
due to a failed check. (The device must be opened so that the floating license option can correctly identify the
display.) TscOpenError returns an integer from 1 to 9 representing possible error causes. The following code
fragment shows the use of this routine:

screen = TscOpen(device_name, NULL);
if (! screen)

error_code = TscOpenError();

The return value has the following meanings:

0 Screen was successfully opened - no error.
1 Unknown device name passed to TscOpen.
2 Could not find the specified color table file.
3 Could not open screen - driver level failure.
4 The DataViews logical device table is full.
5 Protection failure - couldn’t locate/decode license file.
6 Protection failure - failed basic protection check.
7 Protection failure - failed DataViews-specific protection check.
8 Protection failure - error involving HP ID module.
9 Protection failure - failure to acquire floating license.

TscOpenRemoteWindow

Tsc Functions T Routines

Specifies a remote display connection pointer.

OBJECT
TscOpenRemoteWindow (

char *device,
LONG display,
LONG windowid,
char *clutfile)

TscOpenRemoteWindow lets you specify a remote display connection pointer for opening windows on remote
displays. device is the name of the device to open. display is a pointer to a remote display. windowid identifies a
window system that has already been created. clutfile is the name of the file containing a color lookup table. If
device is NULL, the value (if set) of the configuration variable DVDEVICE is used. If clutfile is NULL, the value (if
set) of the configuration variable DVCOLORTABLE is used. Otherwise the default color lookup table is used.
Returns DV_FAILURE if it cannot open device or clutfile. This routine is only useful with X11.

TscOpenSet

Tsc Functions T Routines

Opens a device using specified attributes.

OBJECT
TscOpenSet (

char *dev_name,
char *clutfile,

ULONG flag, <type> value,
ULONG flag, <type> value,
...,

V_END_OF_LIST)

TscOpenSet opens the device, dev_name, specifies the color lookup table, clutfile, sets device attributes, and returns
a new screen object representing that device. Returns NULL if it cannot open the screen.

The device attributes are set using a variable length argument list of attribute/value pairs. Each pair of parameters
starts with an attribute flag that specifies the particular attribute of the device to be set. The second argument sets the
value of the attribute. The list must terminate with V_END_OF_LIST or 0.

For example, to open a screen as an X11 window 800 pixels high by 600 pixels wide, with an upper left position of
(100, 100) relative to the screen origin, you could call:

screen = TscOpenSet ("X", (char *) NULL,
V_WINDOW_X, 100, V_WINDOW_Y, 100,
V_WINDOW_WIDTH, 800, V_WINDOW_HEIGHT, 600,
V_END_OF_LIST);

To open a DataViews screen on an existing window, use the appropriate attribute flags to pass the window id and
display id. For example:

screen = TscOpenSet (device, (char *) NULL,
V_DISPLAY, display, V_WINDOW_ID, window,
V_END_OF_LIST);

Attribute Flags

The attribute flags are optional; when attributes are not set, defaults are used. Not all attribute flags apply to all
DataViews drivers since these attributes can only be set on certain devices. These flags are also used by
Gropen_set, GRset, Vuopendev_set, VOscOpenClutSet, and VOscOpenSet, and are defined in the header
file dvGR.h.

Attribute Flags Description
V_WINDOW_WIDTH Width of window in pixels. Takes an int argument.
V_WINDOW_HEIGHT Height of window in pixels. Takes an int argument.
V_WINDOW_NAME Title of window for window systems which have a title bar. Takes a char *

argument.
V_WINDOW_X The x coordinate position of the window’s upper left corner relative to the

parent window. Takes an int argument.
V_WINDOW_Y The y coordinate position of the window’s upper left corner relative to the

parent window. Takes an int argument.
V_DRAW_FUNCTION Drawing mode. Valid values are V_COPY (normal draw) and V_XOR (draw by

reversing bits, applicable to rubberbanding). Takes a LONG argument.
Window System Data Structures

Flag Description
V_WINDOW_ID Identifier or “handle” for the window maintained by the current screen.

Takes a Window argument for X11.
V_DISPLAY The id or data structure for maintaining the network connection for window

systems with network-based display (currently only X11). Takes a
Display * argument.

V_ICON_NAME Title of the icon for systems with an icon title bar. Takes a char * argument.
V_MOTION_COLLAPSE Collapses all successive motion notify events to a single event. Default is

YES. Takes a BOOLPARAM argument.
V_EXPOSE_COLLAPSE Collapses all successive expose events to a single event. Default is YES.

Takes a BOOLPARAM argument.
DataViews Pre-Defined Cursors

If using WINEVENT polling routines, DataViews cursors must be switched explicitly.

Flag Description
V_ACTIVE_CURSOR Sets the DataViews active cursor, the arrow. Doesn’t take an argument.
V_INITIAL_CURSOR Sets the DataViews initial cursor, the DV logo. Doesn’t take an argument.
Microsoft Windows-Specific Data Flags:

These flags are also discussed in the DataViews for DataViews Installation and System Administration Manual,
Windows Version.

Flag Description
V_WIN32_WINDOW_HANDLE Sets the window handle. Takes an HWND argument.
V_WIN32_NEWFONT Sets the four DataViews hardware fonts. The fonts increase in

size; the smallest is associated with 1, the largest with 4.
Indices that are not set programmatically use the fonts
specified in the DV.INI file if there is one. To maintain
consistent sizes and styles, set all four fonts. Takes two
arguments: an int specifying the index and an HFONT.

V_WIN32_DOUBLE_BUFFER Double-buffering status of the window. Default is YES. Takes a
BOOLPARAM argument.

V_WIN32_ICON_NAME Identification of the icon. Takes a char * argument.
V_WIN32_XORFLAG Win32 raster-operation code for XOR objects. Default is

R2_XORPEN. Takes an int argument. For a list of valid
values, see the Win32 documentation for SetROP2.

V_WIN32_HPALETTE Handle to a logical palette. Lets you pass the Windows equivalent
of a color table. The logical palette must have 256 colors or
less. Takes an HPALETTE argument.

X11-Specific Data Structures

Some of these flags are discussed in more detail in the DataViews and the View Widget in the X Environment
Manual.

Flag Description
V_X_WINDOW_ID Same as V_WINDOW_ID. Takes a Window argument.
V_X_DISPLAY Same as V_DISPLAY. Takes a Display * argument.
V_X_DISPLAY_NAME Character string giving the name of an X11 remote display, for opening an

X11 window on a remote server. The string has the form:
UNIX: hostname:server.screen
OpenVMS: hostname::server.screen

where hostname is the network name of the remote machine, server is the
server number, and screen is the screen number on which to display
the window. These last two numbers are usually zero. Takes a char *

argument.
V_X_APPLIC_CONTEX

T
The application context for the device. Ignored when widgets are passed.

Within an application, all devices use the application context of the
first device. Takes an XtAppContext argument.

V_X_DRAW_WIDGET The widget passed to display DataViews. Can be a form widget or a widget
of any other composite widget subclass. Takes a Widget argument.

V_X_CURSOR X Window system representation of the current cursor. Takes a Cursor
argument.

V_X_APPLIC_CLASS The generic application class for this application. The application class of
the first device is assigned to all subsequent devices. Takes a char *
argument.

V_X_APPLIC_NAME The specific application name for this device. Controls which set of
defaults the window reads from the resource database and X defaults
files. Takes a char * argument.

Flag Description
V_X_ICON X Window system representation for the current icon in the X bitmap

format. Requires that you set V_X_ICON_WIDTH and
V_X_ICON_HEIGHT. Takes a char * argument.

V_X_ICON_WIDTH Width of the X icon. Takes an int argument.
V_X_ICON_HEIGHT Height of the X icon. Takes an int argument.
V_X_ICON_X, Control the x and y position of the iconified window, though the window

manager may override the settings. Each flag takes an int argument.
V_X_ICON_Y
V_X_ICONIC Controls whether the window is drawn initially in an iconified state.

Default is NO. Takes a BOOLPARAM argument.
V_X_EXPOSURE_BLOC

K
Controls whether TscOpenSet blocks (waits for) the expose event before

returning. Applies only to the initial expose event for internally
created windows. If YES, the device is ready for drawing when
TscOpenSet returns. If NO, your application should wait for an expose
event before drawing on the device. Default is NO. Takes a
BOOLPARAM argument.

V_X_RESIZE_BLOCK Controls whether GRset blocks (waits for) the resize and expose events
before returning after an explicit resize. If YES, your application
should follow up immediately with calls to TscReset and TscRedraw.
If NO, your application should wait for resize and expose events
before drawing on the device. Default is NO. Takes a BOOLPARAM
argument.

Flag Description
V_X_FONTSTRUCT Specifies the font corresponding to a 1-based index of fonts used for text.

The fonts increase in size; the smallest is associated with 1, the largest
with 4. Indices that are not set programmatically use the fonts specified
in the DVfonts file if there is one, or in the resource file. To maintain
consistent sizes and styles, set all four indices. Takes two arguments: an
int argument specifying the index and an XFontStruct *. For example:
TscOpenSet (... V_X_FONTSTRUCT, 1, small_fontstr_ptr ...

V_X_DOUBLE_BUFFE
R

If YES, graphics are written to an off-screen pixmap which is copied to the
screen whenever GRflush is called. Reduces flicker but may slow down
drawing speed. Default is NO. Takes a BOOLPARAM argument. If you
are using double buffering with the OPEN LOOK server, you should
also set V_X_RAS_SYNC to YES.

V_X_RAS_SYNC If YES, forces an XSync call after every raster drawing. Ensures that all
raster draws occur when many are done in rapid succession. Default is
NO. Takes a BOOLPARAM argument.

V_X_POLY_HINT Specifies the shape of polygons so the X driver can optimize its

performance. If all polygons in the application are non-self-intersecting,
specify Nonconvex to achieve faster drawing. If all polygons are both
non-self-intersecting and convex, specify Convex for even faster
drawing. Default is Complex. Takes an int argument.

V_X_IMAGE_STRING If YES, text is drawn on a filled rectangle drawn in the background color. If
NO, the text is drawn directly on top of the existing graphics. Default is
YES. Takes a BOOLPARAM argument.

V_X_DASH_STYLE Specifies how gaps in a dashed line are drawn. Valid values are:
LineOnOffDash (gaps are not drawn, so the underlying graphics are
visible) or LineDoubleDash (the gaps are drawn using the current
background color). Default is LineOnOffDash. Takes an int argument.

V_X_COLORMAP The X colormap for the device. Lets you supply a shared colormap to avoid
color swapping problems. Takes a Colormap argument.

V_X_PIXELS Array of X pixels corresponding to the indices in the color table. Forces use
of these pixels, taking precedence over any other method for setting
colors. Takes two arguments: an int argument specifying the number of
pixels and an unsigned long[]. For example:
TscOpenSet (... V_X_PIXELS, 128, pixels ...

V_X_PLANES Array of X plane masks corresponding to the color planes of the pixels. You
must supply these masks if you are planemasking with pixels supplied
using V_X_PIXELS. Takes two arguments: an int argument specifying
the number of masks and an unsigned long[]. For example:
TscOpenSet (... V_X_PLANES, 7, masks ...

V_X_COLORMAP, V_X_PIXELS, and V_X_PLANES give you more control over the color structures used by the X
driver, but also require a deeper understanding of how X and DataViews work together. For a more detailed
explanation, see the GRget description.

TscOpenWindow

Tsc Functions T Routines

Opens a window as a screen object.

OBJECT
TscOpenWindow (

char *device,
int windowid,
char *clutfile)

TscOpenWindow opens the given window as a DV-Tools device, device, giving it the specified color lookup table,
clutfile, and returns the screen object. If device is NULL, the value of the configuration variable DVDEVICE is used.
If clutfile is NULL, the value of the configuration variable DVCOLORTABLE is used. Otherwise the default color
lookup table is used. windowid is the handle used by the window system to refer to the window. The window must
have been created by the application programmer using the local window system creation routines. The DataViews
display device driver must be configured for multiple windows, or an error occurs. The DataViews driver is
configured to allow a maximum number of 10 open windows. Exceeding this limit causes an error. Returns
DV_FAILURE if it cannot open device or clutfile.

TscPrintEnd

Tsc Functions T Routines

Ends printing on Microsoft Windows systems.

void
TscPrintEnd(

OBJECT screen)

TscPrintEnd stops the program from sending the graphics to the printer and resumes sending them to the monitor.
Any subsequent calls, such as TscRedraw, are directed to the monitor.

TscPrintSet

Tsc Functions T Routines

Sets up printer attributes on Microsoft Windows systems.

ADDRESS
TscPrintSet(

int flag, <type> value,
int flag, <type> value,
...,

V_END_OF_LIST)

TscPrintSet sets up a structure containing information for printing. To specify the information, pass flag-value pairs
to TscPrintSet, then terminate the parameter list with V_END_OF_LIST. You do not have to set all the attributes
since all attributes have system default values. You can also set attribute values in the DV.INI file instead of in your
program. Values set in the DV.INI file override the system defaults.

TscPrintSet creates an internal structure and returns a pointer to this structure. The structure is destroyed when you
call TscPrintStart.

The following table lists the flags and their definitions:

Flag Definition
VP_PRINT_SCALE Specifies the size of the printed image on the page. A value of

100 makes the image take up the full 8.5x11 page. The aspect
ratio of the screen is maintained in the printed image. The
origin for printing is the upper left corner. The value must be
an integer. The default value is 100.

VP_PRINT_ORIENTATION Specifies the page direction. Valid values are
DV_LANDSCAPE and DV_PORTRAIT. The default value is
DV_PORTRAIT.

VP_PRINT_DRIVER Specifies which printer driver is called. The value is type
char *. The default value is the default driver for your
system.

VP_PRINT_PORT Specifies the I/O channel. The value is type char *. The
default value is the default port for your system.

VP_PRINT_DEVICE Specifies the printer name. The value is type char *. The
default value is the default printer name for your system.

VP_PRINT_QUALITY Specifies the quality used for printing the image. Valid values
are DV_DRAFT, DV_LOW, DV_MEDIUM, and DV_HIGH.
The default value is DV_MEDIUM.

VP_PRINT_NO_WARNING Specifies whether or not to show warnings when an incorrect
print setting is overruled in favor of a system default setting
that works. The default value is FALSE.

VP_PRINT_DOCUMENT_NAME Specifies name used for the print job. The value is type char *.
The default value is the default job name for your system.

The VP_PRINT* flags are defined in dvGR.h. The DV_* flags are defined in dvstd.h.

TscPrintStart

Tsc Functions T Routines

Starts printing on Microsoft Windows systems.

void
TscPrintStart(

OBJECT screen,
ADDRESS pr_struct)

TscPrintStart starts the printing process for a screen. After this call, any calls that affect the graphics do not change
the appearance on the monitor, but instead go to a printer. The printer is specified in pr_struct, a structure that you
must create by using TscPrintSet before you call this routine. This call is normally followed by a call to TscRedraw,
which sends the entire screen image to the printer. To end printing, call TscPrintEnd.

TscRedraw

Tsc Functions T Routines

Redraws all the drawports in the screen.

BOOLPARAM
TscRedraw (

OBJECT screen,
RECTANGLE *svp)

TscRedraw erases and then redraws the contents of all drawports in the given screen viewport rectangle, svp. If svp
is NULL, the entire screen is redrawn. If screen is NULL, the current screen is used. The screen itself is erased by
drawing the screen’s default background color over the entire screen. If the value of the default background color is
NULL, the screen is erased using color index zero. Drawports within the screen are erased using the background
colors of their views. Objects that were drawn using TdpDrawObjectare not redrawn. Currently, this routine always
returns DV_SUCCESS.

TscReset

Tsc Functions T Routines

Resets all screen drawports after window resizing.

BOOLPARAM
TscReset (

OBJECT screen)

TscReset recalculates the dimensions of each drawport in the screen after resizing the window in which the
application is running. Since a drawport’s screen viewport rectangle is specified in virtual coordinates, its physical
dimensions and aspect ratios change in proportion to that of the window. Does not redraw the screen. Currently, this
routine always returns DV_SUCCESS.

TscSetCurrentScreen

Tsc Functions T Routines

Sets currently active screen.

OBJECT
TscSetCurrentScreen (

OBJECT screen)

TscSetCurrentScreen sets the currently active screen and returns the previously active screen. If screen is NULL,
returns the object id of the currently active screen.

Tvd (Tvariabledescriptor)
Tvd Functions T Routines

Accesses the display variables associated with drawing objects.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
Tdr Tob Tvi

Tvd Functions
TvdGetDataSourceVariable Gets the data source variable.
TvdPutBuffer Sets a new variable descriptor buffer.
TvdPutDataSourceVariable Binds the display variable to a data source

variable.

TvdGetDataSourceVariable

Tvd Functions T Routines

Gets the data source variable.

DSVAR
TvdGetDataSourceVariable (

VARDESC vdp)

TvdGetDataSourceVariable queries the variable descriptor, vdp, to determine which data source variable it is linked
to. Returns DV_FAILURE if vdp is invalid or not bound to a data source variable. Otherwise returns the data source
variable.

TvdPutBuffer

Tvd Functions T Routines

Sets a new variable descriptor buffer.

ADDRESS
TvdPutBuffer (

VARDESC vdp,
ADDRESS newbuffer)

TvdPutBuffer sets the data buffer of the variable descriptor, vdp, to newbuffer. Rebinding must be done before the
call to TdpDraw. Returns DV_FAILURE if vdp is invalid. Otherwise returns the ADDRESS of the previous buffer
binding.

TvdPutDataSourceVariable

Tvd Functions T Routines

Binds the display variable to a data source variable.

DSVAR
TvdPutDataSourceVariable (

VARDESC vdp,
DSVAR dsvar)

TvdPutDataSourceVariable binds the variable descriptor, vdp, to the data source variable, dsvar. After this binding,
the display variable gets its data from the new data source variable. Returns DV_FAILURE if the previous binding
was not to a data source variable or if vdp or dsvar are invalid. Otherwise returns the previous binding.

Tvi (Tview)
Tvi Functions T Routines

View access functions. The view is composed of a drawing object and a data source list. The drawing contains all of
the graphical objects that appear on the screen; the data source list contains the data sources that supply the data
required to make the drawing dynamic. This module contains routines for getting, setting, and manipulating the view
and its components.

The main functions for saving a view are TviSave, which saves a view in binary, and TviASCIISave, which saves a
view in ASCII. The main function for loading, TviLoad, detects if the viewfile is binary or ASCII and loads it
accordingly. Additional functions include TviFileSave and TviFileLoad which save or load a view from a view
file that is already open and TviMemSave, TviASCIIMemSave, and TviMemLoad, which save or load a view
from memory. Loading a view also recursively loads any views referenced by subdrawings in the view.

TInit, TTerminate Tds Tproto
Tdl Tdsv Tsc
Tdp Tlo Tvd
 Tdr Tob Tvi
Tvi Functions
TviASCIIMemSave Saves a view in ASCII format to a memory buffer.
TviASCIISave Saves a view as an ASCII format file.
TviClone Makes a deep copy of a view.
TviCloseData Closes the data sources in a view.
TviConvertDynamics Converts a view with pre-8.0 dynamics to use post-

8.0 dynamics.
TviCreate Creates a view.
TviDestroy Destroys a view, freeing its memory.
TviExciseDrawing Removes objects in a drawing from a view.
TviFileLoad Loads a view from an open file.
TviFileSave Saves a view to an open file.
TviForEachDataSource Traverses the data sources of a view.
TviForEachVar Traverses the data source variables of a view.
TviGetComment Gets the comment field of the view.
TviGetDataSourceList Gets a view’s data source list.
TviGetDrawing Gets a view’s drawing object.
TviLoad Loads a new view in from a file.
TviMemLoad Loads a view from memory.
TviMemSave Saves a view in binary format to a memory buffer.
TviMergeAddDataSources Looks for data source list match and adds if

necessary.
TviMergeDataSources Looks for data source list match with no add option.
TviMergeDrawing Merges a drawing’s objects into a view.
TviOpenData Opens the data sources of a view.
TviPutComment Sets the comment field of the view.
TviPutDataSourceList Replaces a view’s data source list.
TviPutDrawing Replaces a view’s drawing.
TviReadData Reads data from the data sources of a view.
TviSave Saves a view as a binary format file.
TviTestDynamics Tests a view for pre-8.0 dynamics.

TviASCIIMemSave

Tvi Functions T Routines

Saves a view in ASCII format to a memory buffer.

BOOLPARAM
TviASCIIMemSave (

VIEW view,
char **bufferpp,
int *sizep)

TviASCIIMemSave stores a view in ASCII format into a memory buffer allocated by this function. bufferpp is a
pointer to a character pointer which stores the location of the allocated buffer. sizep is a pointer to an integer which
stores the size of the buffer. TviASCIIMemSave is useful in applications such as a network server or database where
you might want to pass views in memory between applications. The user is responsible for freeing this buffer.
Returns DV_FAILURE if passed an invalid view or cannot allocate enough memory. Otherwise returns
DV_SUCCESS. See also TviMemSave and TviMemLoad.

TviASCIISave

Tvi Functions T Routines

Saves a view as an ASCII format file.

BOOLPARAM
TviASCIISave (

VIEW view,
char *filename)

TviASCIISave saves the view as an ASCII format file, filename. Returns DV_FAILURE if it cannot open the file for
writing. Otherwise returns DV_SUCCESS.

TviClone

Tvi Functions T Routines

Creates and returns a deep copy of a view.

VIEW
TviClone (

VIEW view)

TviCloseData

Tvi Functions T Routines

Closes the data sources in a view.

BOOLPARAM
TviCloseData (

VIEW view)

TviCloseData closes the data source list of view and recursively closes the data source lists of any views referenced
by enabled subdrawings contained in view. Returns DV_FAILURE if it is passed an invalid view or if an error
occurs. Otherwise returns DV_SUCCESS.

TviConvertDynamics

Tvi Functions T Routines

Converts a view with pre-8.0 dynamics to use post-8.0 dynamics.

void
TviConvertDynamics (

VIEW view)

TviConvertDynamics converts a view that uses pre-8.0 dynamics to use post-8.0 dynamics. TviConvertDynamics
does this by creating a dynamic control object that emulates the functionality of the pre-8.0 dynamics. See also
TviTestDynamics, VOuDyCoConvert, and VOuDySdConvert.

TviCreate

Tvi Functions T Routines

Creates and returns a view containing an empty drawing and an empty data source list.

VIEW
TviCreate (void)

TviDestroy

Tvi Functions T Routines

Destroys a view, freeing its memory.

BOOLPARAM
TviDestroy (

VIEW view)

TviDestroy destroys the view, freeing its memory. The data source list and drawing that belong to the view are
dereferenced. Returns DV_FAILURE if it is passed an invalid view.

TviExciseDrawing

Tvi Functions T Routines

Removes objects in a drawing from a view.

int
TviExciseDrawing (

VIEW view,
OBJECT drawing)

TviExciseDrawing removes each object contained in the given drawing object from the view. Typically called to
remove objects added by a call to TviMergeDrawing. Returns DV_FAILURE if it is passed an invalid view.
Otherwise returns the number of objects removed from the view.

TviFileLoad

Tvi Functions T Routines

Loads a view from an open file.

VIEW
TviFileLoad (

FILE *file_pointer)

TviFileLoad loads and returns a view from an open file. The call to this routine must be made in the same order as
the corresponding call to TviFileSave. For example, if two strings are written to the file, followed by a call to
TviFileSave, then you must read those two strings from the file before calling TviFileLoad. Returns DV_FAILURE
if it cannot load a valid view. See also TviFileSave.

TviFileSave

Tvi Functions T Routines

Saves a view to an open file.

BOOLPARAM
TviFileSave (

VIEW view,
FILE *file,
int access_mode)

TviFileSave saves a view to an open file using access_mode. access_mode should be WRITE_EXPANDED for
ASCII write, or WRITE_COMPACT for binary write. Flag values are defined in VOstd.h. Returns DV_FAILURE if it
is passed an invalid view. Otherwise returns DV_SUCCESS.

TviForEachDataSource

Tvi Functions T Routines

Traverses the data sources of a view.

ADDRESS
TviForEachDataSource (

VIEW view,
ADDRFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

DATASOURCE ds,
ADDRESS argblock)

TviForEachDataSource traverses all the data sources of view and recursively traverses the data sources of any views
referenced by enabled subdrawings contained in view. Calls fun for each data source. Continues the traversal while
fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal when fun returns a non-NULL ADDRESS or
V_HALT_TRAVERSAL. The return value of the traversal is the return value of the last call to fun.

fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have two parameters: the data source being processed, and the argument or argument block required by the
function. The argument can be NULL. If more than one argument is required, the argument block should be a pointer
to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1. to perform a particular operation on each data source, or
2. to find a particular data source.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return V_CONTINUE_TRAVERSAL for ADDRESS if the data source is
not found. Otherwise it should return the data source for ADDRESS.

Note: You should not alter the view by adding, deleting, or reordering the data sources during traversal.

For an example of a typical function, see the example under TdrForEachNamedObject. Note that the example
demonstrates the use of a function with three parameters, but TviForEachDataSource requires only two.

TviForEachVar

Tvi Functions T Routines

Traverses the data source variables of a view.

ADDRESS
TviForEachVar (

VIEW view,
ADDRFUNPTR fun,
ADDRESS argblock)

ADDRESS
fun (

DATASOURCE ds,
DSVAR dsv,
ADDRESS argblock)

TviForEachVar traverses all the data source variables of view and recursively traverses the data source variables of
any views referenced by enabled subdrawings contained in view. Calls fun for each data source variable. Continues
the traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal when fun returns a non-
NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the return value of the last call to
fun. For a description of fun, see TviForEachDataSource. Note that TviForEachDataSource traverses data
sources, passing two parameters to fun. TviForEachVar traverses data source variables, passing three parameters to
fun: the data source, the data source variable, and the argument block.

TviGetComment

Tvi Functions T Routines

Gets the comment field of the view.

char *
TviGetComment (

VIEW *view)

TviGetDataSourceList

Tvi Functions T Routines

Gets a view’s data source list.

DATASOURCELIST
TviGetDataSourceList (

VIEW view)

TviGetDataSourceList returns the data source list of the view. Returns DV_FAILURE if it is passed an invalid view.

TviGetDrawing

Tvi Functions T Routines

Gets a view’s drawing object.

OBJECT
TviGetDrawing (

VIEW view)

TviGetDrawing returns the drawing object of the view. Returns DV_FAILURE if it is passed an invalid view.

TviLoad

Tvi Functions T Routines

Loads a new view in from a file.

VIEW
TviLoad (

char *filename)

TviLoad reads a view from the view file, filename, stored in either ASCII or binary format. If filename is NULL, the
value (if set) of the configuration variable DVVIEW is used as the name of the file to load. The view file can be
created with a call to TviSave or TviASCIISave, or by using the Save View command from DV-Draw. If the
application has rebound any data source variables to user-defined data buffers, these data buffers must be recreated
when restoring views that were saved with TviSave or TviASCIISave. Returns DV_FAILURE if filename does not
contain a valid view. Otherwise returns the newly created view.

TviMemLoad

Tvi Functions T Routines

Loads a view from memory.

VIEW
TviMemLoad (

char *bufferp,
int size)

TviMemLoad reads a view from a previously allocated memory buffer. This memory buffer can be received from a
network or copied from another process, but the original buffer must hold a view created by a call to TviMemSave
or TviASCIIMemSave. TviMemLoad makes the appropriate translation from a binary or ASCII storage format.
Returns DV_FAILURE if the buffer does not contain a valid view. Otherwise returns the newly created view. See
also TviASCIIMemSave TviASCIIMemSave and TviMemSave.

TviMemSave

Tvi Functions T Routines

Saves a view in binary format to a memory buffer.

BOOLPARAM
TviMemSave (

VIEW view,
char **bufferpp,
int *sizep)

TviMemSave stores a view in binary format into a memory buffer allocated by this function. bufferpp is a pointer to
a character pointer into which the location of the allocated buffer is stored. sizep is a pointer to an integer which
stores the size of the buffer. The user is responsible for freeing this buffer. Returns DV_FAILURE if passed an
invalid view or cannot allocate enough memory. Otherwise returns DV_SUCCESS. See also TviASCIIMemSave
and TviMemLoad.

TviMergeAddDataSources

Tvi Functions T Routines

Looks for data source list match and adds if necessary.

BOOLPARAM
TviMergeAddDataSources (

VIEW view,
DATASOURCELIST master_dsl,
int matchflag)

TviMergeAddDataSources looks for a match between the views’s data source list and the master data source list,
master_dsl, using the matchflag parameter:

DS_EXACTMATCH a data source in the view must exactly match
one of the data sources in master_dsl.

DS_SUBSETMATCH a data source in the view must be a subset of
one of the data sources in master_dsl.

DS_NAMEMATCH the name of a data source in the view must
match the name of one of the data sources
in master_dsl.

If a match is found, the view’s data source variables are merged with the matching data sources in master_dsl, and
the view’s data source list is replaced with master_dsl. If no match is found, the view’s data source is added to
master_dsl. Returns YES if any data sources were added to master_dsl. Otherwise returns NO. Does nothing and
returns NO if it is passed an invalid view or data source list.

TviMergeDataSources

Tvi Functions T Routines

Looks for data source list match with no add option.

DATASOURCELIST
TviMergeDataSources (

VIEW view,
DATASOURCELIST master_dsl,
int matchflag)

TviMergeDataSources performs the same comparison and uses the same flags as TviMergeAddDataSources, but
has no add feature. Instead, if no match occurs, returns a new data source list containing all non-matching data
sources. Does nothing and returns DV_FAILURE if it is passed an invalid view or data source list.

TviMergeDrawing

Tvi Functions T Routines

Merges a drawing’s objects into a view.

int
TviMergeDrawing (

VIEW view,
OBJECT drawing)

TviMergeDrawing adds all of the objects in the drawing to the view. Objects can be removed selectively using
TviExciseDrawing. If the view contains dynamic objects, you should also call TviMergeAddDataSources to
merge the data sources. If you have already drawn the view in a drawport, you must call TdpDraw to draw it again.
Returns DV_FAILURE if it is passed an invalid view. Otherwise returns the number of objects merged into the view.

TviOpenData

Tvi Functions T Routines

Opens the data sources of a view.

BOOLPARAM
TviOpenData (

VIEW view)

TviOpenData opens the data source list of view and recursively opens the data source lists of any views referenced
by enabled subdrawings contained in view. Returns DV_FAILURE if it is passed an invalid view. Otherwise returns
DV_SUCCESS.

TviPutComment

Tvi Functions T Routines

Sets the comment field of the view.

void
TviPutComment (

VIEW view,
char *comment)

TviPutDataSourceList

Tvi Functions T Routines

Replaces a view’s data source list.

DATASOURCELIST
TviPutDataSourceList (

VIEW view,
DATASOURCELIST dsl)

TviPutDataSourceList replaces the data source list belonging to the view with a new one, specified in the parameter,
dsl. If this parameter is NULL, an empty data source list is substituted. NULL typically occurs for a static drawing,
or when the programmer is rebinding variable descriptors to an application program variable and wants to destroy
dsl with TdlDestroy. Returns DV_FAILURE if it is passed an invalid view or dsl. Otherwise returns the old data
source list belonging to the view.

TviPutDrawing

Tvi Functions T Routines

Replaces a view’s drawing.

OBJECT
TviPutDrawing (

VIEW view,
OBJECT drawing)

TviPutDrawing replaces the drawing object belonging to the view. Any drawports that use this view must be
recreated in order for the changes to be seen. Returns DV_FAILURE if it is passed an invalid view. Otherwise returns
the old drawing object.

TviReadData

Tvi Functions T Routines

Reads data from the data sources of a view.

BOOLPARAM
TviReadData (

VIEW view)

TviReadData reads one iteration of data from the data source list of view and recursively reads the data source lists
of any views referenced by enabled subdrawings contained in view. Returns DV_FAILURE if it is passed an invalid
view. Otherwise returns DV_SUCCESS.

TviSave

Tvi Functions T Routines

Saves a view as a binary format file.

BOOLPARAM
TviSave (

VIEW view,
char *filename)

TviSave saves the view as a binary format file, filename. Returns DV_FAILURE if it is passed an invalid view.

TviTestDynamics

Tvi Functions T Routines

Tests a view for pre-8.0 dynamics.

BOOLPARAM
TviTestDynamics (

VIEW view)

TviTestDynamics tests a view for pre-8.0 dynamics. Pre-8.0 dynamics are subdrawing dynamics, which use a
threshold table object, and color dynamics, which use the foreground color attribute field of an object to hold a
variable descriptor object. Post-8.0 dynamics include subdrawing dynamics, color dynamics, and motion dynamics
and are implemented using dynamic control objects. Returns YES if view has pre-8.0 dynamics. Otherwise returns
NO. See also TviConvertDynamics.

VO Routines
Vo Routines

Routines for managing DataViews objects. Each VOxx module contains routines for creating and performing
operations specific to an object, where xx is one of the DataViews object types. The VOob layer contains routines
common to most objects types. Certain routines for the objects are located higher up in the T layer, in the Tlocation,
Tdrawing, Tobject, and Tscreen modules. Because objects can be multiply referenced, there is no destroy operation.
Instead, most object types maintain reference counts. When the reference count of an object reaches zero,
DataViews deletes the object.

Objects are DataViews private types, declared as type OBJECT. You can use VOobType to determine the type of
the object.

Objects fall into two categories: graphical objects, such as arc and line, and non-graphical objects, such as input
technique object and location object. The drawing, deque, node, and edge are special non-graphical objects because
they can contain graphical objects, which makes them displayable on the screen. For example, a drawing object is a
list of the graphical objects in a view. The point object is also a special case because it appears as a small cross when
it is not part of an object.

Each graphical object has attributes that it keeps track of with the DV-Tools public type ATTRIBUTES. The attribute
structure contains all fields possible in an object. Only certain fields apply to a given object. To create a graphical
object, determine which attribute fields are valid for that object by looking at the description of the VOxxCreate
routine. Initialize an attribute structure with VOuAtInit, fill in the applicable attributes using VOuAttr, then pass the
resulting attribute structure to the graphical object’s create function. The ATTRIBUTES structure and flags are
declared in VOstd.h and listed in the Include Files chapter of this manual.

Vo Routines

VO Modules
All modules in the VO layer require the following #include files:

#include "std.h"
#include "dvstd.h"
#include "dvtools.h"
#include "VOstd.h"
#include "VOfundecl.h"

Any additional #include files required by a particular VOxx module are listed in the synopsis section for that module.
VOob A set of general operations that act on many different types of

objects.
VOar Manages arc objects (ar).
VOci Manages circle objects (ci)
VOco Manages color objects (co).
VOdbg General debug and statistics routines.
VOdg Manages data group objects (dg).
VOdq Manages deque objects (dq).
VOdr Manages drawing objects (dr).
VOdy Manages dynamic control objects.
VOed Manages edge objects (dq).
VOel Manages ellipse objects (el).
VOg Draws graphical objects on the screen using lower level routines.
VOic Manages icon objects (ic).
VOim Manages image objects (im).
VOin Manages input objects (in).
VOit Manages input technique objects (it).
VOln Manages line objects (ln).
VOlo Manages location objects (lo).
VOno Manages node objects.
VOpm Manages pixmap objects (pm).
VOpt Manages point objects (pt).
VOpy Manages polygon objects (py).
VOre Manages rectangle objects (re).
VOru Manages rule object.
VOsc Manages screen objects (sc).
VOsd Manages subdrawing objects (sd).
VOsf Manages scalable font text objects (sf).
VOsk Manages slotkey objects
VOtt Manages threshold table objects (tt).
VOtx Manages text objects (tx).
VOu Utility routines for use with objects.
VOvd Manages variable descriptor objects (vd).
VOvt Manages vector text objects (vt).
VOxf Manages transform objects (xf).

VOar (VOarc)
VOar Functions VO Routines

Manages arc objects (ar). An arc object is defined by three point subobjects: the first defines the start point, the
second defines the center point, and the third defines the end point of the arc. Arc attributes are foreground color,
background color, fill status, line type, line width, and arc draw direction. The arc is drawn from the start point until
it meets the line defined by the center point and end point. The arc direction attribute determines whether the arc is
drawn clockwise or counter-clockwise. The arc fill status can be FILL, EDGE, EDGE_WITH_FILL,
FILL_WITH_EDGE, or DV_TRANSPARENT. When EDGE is used, the boundary is drawn using the line attributes.
An arc using DV_TRANSPARENT fill looks identical to one with EDGE only, but you can select it with the cursor
anywhere in the interior of the shape. A transparent arc does not visually obscure objects behind it, but they cannot
be selected through it. Filled arcs resemble pie slices. When either EDGE_WITH_FILL or FILL_WITH_EDGE is
used, the second feature listed in the fill status flag uses the background color attribute. The foreground color is used
in all other cases.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOar Functions

VOarAtGet See VOobAtGet.
VOarAtSet See VOobAtSet.
VOarBox See VOobBox.
VOarClone See VOobClone.
VOarCreate Creates an arc object.
VOarDereference See VOobDereference.
VOarIntersect See VOobIntersect.
VOarPtGet See VOobPtGet.
VOarPtSet See VOobPtSet.
VOarRefCount See VOobRefCount.
VOarReference See VOobReference.
VOarStatistic Returns statistics about arcs.
VOarTraverse See VOobTraverse.
VOarValid See VOobValid.
VOarXfBox See VOobXfBox.
VOarXformBox See VOobXformBox.
A VOar routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOar routine to save the overhead of an additional routine call.

VOarCreate

VOar Functions VO Routines

Creates an arc object.

OBJECT
VOarCreate (

OBJECT start,
OBJECT center,
OBJECT end,
ATTRIBUTES *attributes;

VOarCreate creates and returns an arc object. Valid attributes field flags are:

FOREGROUND_COLOR FILL_STATUS
BACKGROUND_COLOR LINE_TYPE
ARC_DIRECTION LINE_WIDTH

If attributes is NULL, default values are used. Valid arc direction flags are CLOCKWISE and
COUNTER_CLOCKWISE.

VOarStatistic

VOar Functions VO Routines

Returns statistics about arcs.

LONG
VOarStatistic (

int flag)

VOarStatistic returns statistics about arcs, depending on the value of flag. Valid flag values are defined in VOstd.h. If
flag is OBJECT_COUNT, returns the current number of arcs.

Voob
VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil

A set of general operations that act on many different types of objects. Each VOob routine is listed with the objects
for which it is defined in the Domains table . If a VOob routine is applied to an object for which it is not defined,
there is no effect.

There are two categories of VOob routines: routines that serve as a layer over a specific routine in the VO layer and
routines that extend object functionality. The first group works with corresponding routines in the VO layer. For
example, the VOobTraverse function, which simply calls the appropriate VOxxTraverse function for the object being
traversed. The second group has no corresponding routines in the VO layer. For example, the VOobDyUtil routines
let you attach a dynamic control object to other objects, and the VOobSlotUtil routines let you attach general
information to objects that support slots.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voob Functions

VOobAtGet Gets the current attributes of an object.
VOobAtSet Sets new attributes of an object.
VOobBox Gets an object’s bounding box in world

coordinates.
VOobClone Makes a deep copy of an object.
VOobDeleteSlot Deletes a slot from an object.
VOobDereference Decrements the reference count of an object.
VOobDyDelete Removes the dynamic control object from an

object.
VOobDyGet Returns the dynamic control object attached to

the object.
VOobDySet Associates a dynamic control object with a

graphical object.
VOobGetSlot Get a specified slot from the object.
VOobHasSlot Determines if the object has the specified slot.
VOobIntersect Determines if an object intersects the viewport.
VOobNumSlots Gets the number of slots from an object.
VOobPtGet Gets the index-th control point of an object.
VOobPtSet Sets a new control point for an object.
VOobRefCount Gets the reference count of an object.
VOobReference Increments the reference count of an object.
VOobSetSlot Sets a slot for an object.
VOobSupportsSlots Determines if the object allows adding slots.
VOobTraverse Applies a user-supplied function to subobjects.
VOobType Returns the type flag of an object.
VOobValid Determines if an object is valid.
VOobXfBox Gets an object’s bounding box in screen

coordinates.
VOobXformBox Gets the bounding box of a transformed object

in screen coordinates.
VOobXformBoxPadde

d
Gets the bounding box of a transformed object

in screen coordinates plus a specified
amount of padding.

VOobAtGet

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets the current attributes of an object.
void
VOobAtGet (

OBJECT object,
ATTRIBUTES *attributes)

VOobAtGet sets the fields of the attributes structure to the attribute values of the current object. Fields that don’t
apply to the object are set to EMPTY_FIELD or EMPTY_FLOAT_FIELD, depending on the type of entry.

VOobAtSet

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Sets new attributes in an object.
void
VOobAtSet (

OBJECT object,
ATTRIBUTES *attributes)

VOobAtSet sets the attributes of an object to the new values in the attributes structure. The attributes structure is a
DataViews public type, which contains fields for all of the attributes of all the different graphical object types. It is
used as an intermediate mechanism for manipulating the attributes of graphical objects. Each object copies only the
fields for which it has attributes. If attributes contains fields with the value EMPTY_FIELD or
EMPTY_FLOAT_FIELD, the original value of the field is retained. Otherwise it is replaced by the new value.

VOobBox
Routines for getting bounding boxes. Examples

Functions
VOobBox Gets an object’s bounding box in world coordinates.
VOobXfBox Gets an object’s bounding box in screen coordinates.
VOobXformBox Gets the bounding box of a transformed object in screen coordinates.
VOobXformBoxPadd
ed

Gets the bounding box of a transformed object in screen coordinates
plus a specified amount of padding.

Examples

VOobBox

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets an object’s bounding box in world coordinates.
void
VOobBox (

OBJECT object,
RECTANGLE *wvp,
RECTANGLE *svp_delta)

VOobBox returns the world bounding box in wvp. The world bounding box calculation does not include device-
dependent features such as wide lines, scalable font text size, or hardware text size. Instead, VOobBox provides a
screen coordinate offset rectangle, svp_delta. This specifies the additional size in screen coordinates to allow for line
thickness greater than one, scalable font text, and hardware text.

For vector text (vt), svp_delta is always zero. For hardware text (tx) and scalable font (sf) text, which are device-
dependent, wvp is a dimensionless rectangle located at the text object’s anchor point, and svp_delta specifies the size
of the text object. Note: svp_delta is a best guess until the object is actually drawn.

VOobBox is the only way to get object size information before the drawport is created. After the drawport is created,
you can get the bounding box in screen coordinates using VOobXfBox.

VOobXfBox

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets an object’s bounding box in screen coordinates.
void
VOobXfBox (

OBJECT object,
OBJECT xform,
RECTANGLE *svp)

VOobXfBox returns the screen bounding box in svp. xform is the drawing-to-screen transform of the object, which is
available only after the drawport has been created. To get xform, call TdpGetXform with the DR_TO_SCREEN flag
and the object’s drawport. This routine is obsolete but maintained for compatibility with previous releases.

The bounding box is one pixel larger than the object appears in order to guarantee complete coverage of the object.
On some objects, the bounding box may be several pixels larger. Calling this routine recursively can result in an
accumulation of additional pixels. To get a true bounding box, use VOobXformBox. To get a true bounding box with
a specified number of additional pixels, use VOobXformBoxPadded.

For objects such as drawings and subdrawings, the bounding box is the union of the bounding boxes of the
subobjects. For node and edge objects, the bounding box is the bounding box of the associated geometry object.

This routine always returns a bounding box, even for objects with no dimensions such as empty text stings, empty
subdrawing objects, or node or edge objects without geometry. For correct return values on such objects, use
VOobXformBox.

Note that if your drawport pans or changes scale, the screen bounding box also changes. To get the new bounding
box, you must first call TdpGetXform to get the new transformation, then call VOobXfBox.

To convert the screen coordinates to equivalent world coordinates, use TdpScreenToWorld.

VOobXformBox

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets the bounding box of a transformed object in screen coordinates.
BOOLPARAM
VOobXformBox (

OBJECT object,
OBJECT xform,
RECTANGLE *svp)

VOobXformBox returns the true screen bounding box of a transformed object in svp. xform is the drawing-to-screen
transform of the object, which is available only after the drawport has been created. To get xform, call TdpGetXform
with the DR_TO_SCREEN flag and the object’s drawport.

This routine returns a bounding box that encompasses the exact size of the object, without allowing for rounding in
the calculations. To get a bounding box with a specified number of additional pixels, use VOobXformBoxPadded.

This routine returns a true bounding box even with rotational transformation. If the object has no dimensions, such
as empty text stings, empty subdrawing objects, or node or edge objects without geometry, returns NO.

VOobXformBoxPadded

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets the bounding box of a transformed object in screen coordinates plus a specified amount of padding.
BOOLPARAM
VOobXformBoxPadded (

OBJECT object,
OBJECT xform,
RECTANGLE *svp,
int padding)

VOobXformBoxPadded returns the true screen bounding box in svp, expanded by the number of pixels specified in
padding. xform is the drawing-to-screen transform of the object, which is available only after the drawport has been
created. To get xform, call TdpGetXform with the DR_TO_SCREEN flag and the object’s drawport.

If the object has no dimensions, such as empty text stings, empty subdrawing objects, or node or edge objects
without geometry, returns NO.

VOobBox Examples
Given a rectangle object, re, centered on the world coordinate origin, 200 world coordinate units per side, and with a
line thickness of 4, use the following call:

OBJECT re;
RECTANGLE wvp, svp_delta;
VOobBox (re, &wvp, &svp_delta);

This results in the following values for the rectangles:
wvp = {-100, -100, 100, 100}
svp_delta = {-2, -2, 2, 2}

The following code fragment shows how to repair a portion of the drawport after explicitly erasing an object:
OBJECT xform;
RECTANGLE repair_vp;

/* Before erasing, determine the portion of the drawport to repair. */
xform = TdpGetXform (drawport, DR_TO_SCREEN);
VOobXfBox (object, xform, &repair_vp);

/* Erase the overlayed object. */
TdpEraseObject (drawport, object);
/* Repair the erased portion. */
TdpRedraw (drawport, &repair_vp, NO);

The following code fragment shows how to calculate a screen coordinate bounding box using VOobBox. This
method was superseded with the introduction of VOobXfBox, but was a common method that your code may still
be using. For the following objects, this method and VOobXfBox are equivalent:

dg, ic, im, in, tx

For these other objects, VOobXfBox gives more accurate results and should be used if possible. In particular,
VOobXfBox is more accurate for drawing objects and when the drawport is created using TdpCreateStretch.

ar, ci, dr, ed, el, ln, no, py, re, sd, tt, vt

RECTANGLE wvp, svp_delta;
RECTANGLE combined;

VOobBox (object, &wvp, &svp_delta);
TdpWorldToScreen (drawport, &wvp.ll, &combined.ll);
combined.ll.x += svp_delta.ll.x;
combined.ll.y += svp_delta.ll.y;

TdpWorldToScreen (drawport, &wvp.ur, &combined.ur);
combined.ur.x += svp_delta.ur.x;
combined.ur.y += svp_delta.ur.y;

VOobClone

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Makes a deep copy of an object.
OBJECT
VOobClone (

OBJECT object)
VOobClone makes a deep copy of an object. A deep copy includes all of the object’s subobjects. This makes a
complete duplicate of the original object with no subobjects in common. There are some exceptions to this:

Subdrawing objects do not copy the drawings they contain.
Data group objects do not copy their attached data source variables.
Input objects do not copy their attached data source variables.
Input technique objects do not copy their template drawings.
Icon and image objects do not copy their associated pixmaps.

Returns a copy of the cloned object.

VOobDereference

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Decrements the reference count of an object.
void
VOobDereference (

OBJECT object)
VOobDereference decrements the reference count of an object by one. If this results in a reference count of zero or
less, DataViews destroys the object, frees the allocated memory, and dereferences its subobjects. The reference
count is an integer stored within the object that records how many other objects reference it. To get the current
reference count of an object, use VOobRefCount. For additional information on referencing objects, see
VOobReference.

An object that was referenced by using VOobReference should be dereferenced by using VOobDereference when it
is no longer needed.

Utility Vo dynamics Routines

Utility routines for getting, setting, and deleting dynamic control objects.
A dynamic control object is destroyed when it is no longer attached to any object, so it may be destroyed after a call
to VOobDyDelete or VOobDySet. To prevent a dynamic control object from being destroyed, attach it to a dummy
graphical object.

Functions
VOobDyDelet

e
Removes the dynamic control object from an object.

VOobDyGet Returns the dynamic control object attached to the
object.

VOobDySet Associates a dynamic control object with a graphical
object.

VOobdy Example

VOobDyDelete

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Removes the dynamic control object from the object,
void
VOobDyDelete (

OBJECT object)

VOobDyGet

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Returns the dynamic control object attached to the object.
OBJECT
VOobDyGet (

OBJECT object)

VOobDySet

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Attaches the dynamic control object to the object.
void
VOobDySet (

OBJECT object,
OBJECT dynamic)

See Also
VOdynamic

VOdy Example
The following code shows how to enable and disable dynamics for a rectangle given an existing rectangle, dynamic
control object, and drawport:

OBJECT rectangle, dynamic;
DRAWPORT drawport;

/* enable dynamics for the rectangle */
VOobDySet (rectangle, dynamic);

/* display dynamic changes */
TdpDrawNext (drawport);

/* disable dynamics for the rectangle */
VOobDyDelete (rectangle);

VOobIntersect

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Determines if an object intersects the viewport.
BOOLPARAM
VOobIntersect (

OBJECT object,
OBJECT xform,
RECTANGLE *vp)

VOobIntersect tests for the intersection of an object with the rectangle vp. The rectangle vp is normally specified in
screen coordinates and xform is a transform object (xf) which specifies the world-to-screen coordinate
transformation of the object. If xform is NULL, the rectangle vp is assumed to be in world coordinates.

Returns YES if intersecting, NO otherwise.

VOobPtGet

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets the index-th control point of an object.
OBJECT
VOobPtGet (

OBJECT object,
int index)

VOobPtGet gets a specific control point of an object. The point is specified by the integer index, where a value of 1
indicates the first point, a value of 2 the second point, etc.

If index is 0, returns the number of point objects contained in object.

If there is no index-th point, returns NULL.

VOobPtSet

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Sets a new control point for the object.
void
VOobPtSet (

OBJECT object,
int index,
OBJECT new_point)

VOobPtSet replaces a specified control point of an object with a new control point, new_point. The control point to
be replaced is specified by index, where a value of 1 indicates the first point, a value of 2 the second point, etc.

VOobRefCount

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets the reference count of an object.
int
VOobRefCount (

OBJECT object)
VOobRefCount returns the reference count of the object. The reference count is an integer stored within the object
that records how many other objects reference it. This information is used to determine when it is safe for
DataViews to destroy the object. To increment and decrement the reference count of the object, use VOobReference
and VOobDereference.

VOobReference

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Increments the reference count of an object.
OBJECT
VOobReference (

OBJECT object)
VOobReference increments the reference count of an object by one. The reference count is an integer stored within
the object which records how many other objects reference it. This information is used to determine when it is safe
for DataViews to destroy the object. To get the current reference count of an object, use VOobRefCount.

Most objects, including all graphical objects, have reference counts. When an object is created, it has a reference
count of zero. Every time a child object is added to a parent object such as a deque, drawing object, or drawing
object’s name list, the reference count of the child object is automatically incremented. When the parent object is
dereferenced, the reference count of the child object is automatically decremented. The object is destroyed by
DataViews if its reference count falls to or below zero. See also VOobDereference.

If you create an object to use only as a child object, do not reference it. The child object is then destroyed when its
parent object is destroyed. If you create a child object that you want to retain after the destruction of its parent
object, call VOobReference to reference it. The child object is then not destroyed when its parent object is destroyed.
To destroy a parentless child object when you no longer want it, call VOobDereference.

Returns the object. This allows objects to be created and referenced with a single nested call, as shown below. If the
object is invalid, returns the object.

Example
The following code fragment creates a permanent point by nesting the VOptCreate call in a VOobReference call.
After this call, pt1 has a reference count of 1.

pt1 = VOobReference (VOptCreate (WORLD_COORDINATES, -10000, 4000, (OBJECT)NULL));

The following code fragments show how the reference counts of point objects change as they are created,
referenced, used in other objects, and dereferenced. In the first code fragment, two temporary point objects are
created then destroyed by DataViews when the rectangle is destroyed.

/* RefCounts become: pt2 - 0, pt3 - 0. */
pt2 = VOptCreate (WORLD_COORDINATES, -9000, 3000, (OBJECT)NULL);
pt3 = VOptCreate (WORLD_COORDINATES, -8000, 2000, (OBJECT)NULL);

/* RefCounts become: pt2 - 1, pt3 - 1. */
rect1 = VOreCreate (pt2, pt3, (ATTRIBUTES *)NULL);

...

/* Destroy pt2 and pt3 now. */
VOobDereference (rect1);

In the following code fragment, two point objects are created and referenced. They are not destroyed by DataViews
when the rectangle is destroyed, and should be dereferenced explicitly.

/* RefCounts become: pt4 - 0, pt5 - 0. */
pt4 = VOptCreate (WORLD_COORDINATES, -9000, 3000, (OBJECT)NULL);
pt5 = VOptCreate (WORLD_COORDINATES, -8000, 2000, (OBJECT)NULL);

/* RefCounts become: pt4 - 1, pt5 - 1. */
VOobReference (pt4);
VOobReference (pt5);

/* RefCounts become: pt4 - 2, pt5 - 2. */
rect2 = VOreCreate (pt4, pt5, (ATTRIBUTES *)NULL);

...

/* pt4 and pt5 are not destroyed now. */
VOobDereference (rect2);

/* Destroy pt4 and pt5 now. */
VOobDereference (pt4);
VOobDereference (pt5);

VOobSlotUtil
Utility routines for operating on slots. A slot is a means of attaching information to objects. If an object has more
than one slot, you can think of these slots as being arranged in a table that can be accessed either using slotkey
objects or indices. Slotkey objects associate a slot with the information describing what the slot contains. A slot can
contain the following: an integer, an array of integers, a float, an array of floats, an object, or a pointer to a NULL-
terminated string.
The routines provided in this module attach a slot to an object via a slotkey object or by getting a slot from an
object. You can also verify that an object supports slots or has a particular slot. Deleting a slot from an object does
not free the memory allocated to the slotkey object.
The VOslotkey module provides routines for declaring and getting information about slotkey objects.
The slotkey feature is intended for use by sophisticated DataViews users.

Functions
VOobDeleteSlot Deletes a slot from an object.
VOobGetSlot Gets a specified slot from the object.
VOobHasSlot Determines if the object has the specified slot.
VOobNumSlots Gets the number of slots from an object.
VOobSetSlot Sets a slot for an object.
VOobSupportsSlots Determines if the object allows adding slots.

VOobDeleteSlot

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Deletes a slot from an object.
BOOLPARAM
VOobDeleteSlot (

OBJECT object,
OBJECT slotkey)

VOobDeleteSlot deletes a slot from an object as specified by slotkey. The parameter slotkey specifies the slot either
as a slotkey object or as an index into the object’s slot table. VOobDeleteSlot returns DV_SUCCESS if it finds and
deletes the slot.

VOobGetSlot

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets a specified slot from the object.
LONG
VOobGetSlot (

OBJECT object,
OBJECT slotkey,
LONG *value,
ULONG *flags)

VOobGetSlot gets the slot specified by slotkey from the object and stores it in the parameter value. The parameter
slotkey specifies the slot either as a slotkey object or as an index into the object’s slot table. Use VOobNumSlots to
get the number of slots in an object’s slot table. Use the flags field to keep track of information about the value
stored in the slot. For example, you can use the flag area to store access counts or semaphores or to keep track of
whether the slot has been accessed, changed, or initialized. When a slot is created or loaded from a file, its flag field
is set to 0. If slotkey is a slotkey object, VOobGetSlot returns the 1-based index of the slot found. If slotkey is an
index, VOobGetSlot returns the slotkey object of the slot found. If the slot was not found, VOobGetSlot returns 0.

VOobHasSlot

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Determines if the object has the specified slot.
int
VOobHasSlot (

OBJECT object,
OBJECT slotkey)

VOobHasSlot determines if the object has a slot for the given slotkey object. Returns the 1-based index of the slot if
found. Otherwise returns 0.

VOobNumSlots

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Gets the number of slots from an object.
int
VOobNumSlots (

OBJECT object)
VOobNumSlots returns the number of slots of an object.

VOobSetSlot

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Sets a slot for an object.
int
VOobSetSlot (

OBJECT object,
OBJECT slotkey,
LONG *value,
ULONG *flags)

VOobSetSlot sets the object’s slot specified by slotkey to value. The parameter slotkey must be a slotkey object,
unlike the slotkey parameter of VOobDeleteSlot and VOobGetSlot which can also be an index. Use the flags field to
keep track of information about the value stored in the slot. For example, you can use the flag area to store access
counts or semaphores or to keep track of whether the slot has been accessed, changed, or initialized. When a slot is
created or loaded from a file, its flag field is set to 0. Returns the 1-based index of the slot if VOobSetSlot adds the
slot. Otherwise returns 0.

VOobSupportsSlots

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Determines if the object allows adding slots.
BOOLPARAM
VOobSupportsSlots (

OBJECT object)
VOobSupportsSlots returns YES if the object allows adding slots. Otherwise returns NO.

See Also
VOslotkey module.

Example
The following code illustrates how to declare different types of slotkeys and attach them to a drawing object.

int intnum 1234;
int intarray[3] = {1,2,3};
float floatnum = 1.2345;
float floatarray[3] = {1.1, 2.2, 3.3};
OBJECT drawing, rectangle;
OBJECT intsk, intarraysk, namesk, objsk, floatsk, floatarraysk;

intsk = VOskDeclare ("int", VOSK_INT_TYPE);
intarraysk = VOskDeclare ("INT_ARRAY", VOSK_INT_ARRAY_TYPE, 3);
namesk = VOskDeclare ("STRING", VOSK_STRING_TYPE);
objsk = VOskDeclare ("OBJECT", VOSK_OBJECT_TYPE);
floatsk = VOskDeclare ("FLOAT", VOSK_FLOAT_TYPE);
floatarraysk = VOskDeclare ("FLOAT", VOSK_FLOAT_ARRAY_TYPE, 3);

Tinit ((char *) NULL, (char *) NULL);

view = TviCreate();
drawing = TviGetDrawing (view);

rectangle = VOreCreate (VOptCreate (WORLD_COORDINATES, -100, -100, 0),
VOptCreate (WORLD_COORDINATES, -100, -100, 0),
(ATTRIBUTES *)0);

VOobReference (rectangle);

VOobSetSlot (drawing, intsk, (LONG *)&intnum, (ULONG *)0);
VOobSetSlot (drawing, intarraysk, (LONG *)intarray, (ULONG *)0)
VOobSetSlot (drawing, namesk, (LONG *)"Hello World", (ULONG *)0)
VOobSetSlot (drawing, objsk, (LONG *)&rectangle, (ULONG *)0)
VOobSetSlot (drawing, floatsk, (LONG *)&floatnum, (ULONG *)0)
VOobSetSlot (drawing, floatarraysk, (LONG *)&floatarray, (ULONG *)0)

VOobTraverse

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Applies a user-supplied function to subobjects.
BOOLPARAM
VOobTraverse (

OBJECT object,
VOOBTRAVERSEFUNPTR test,
ADDRESS testargs)

BOOLPARAM
test (

OBJECT subobj,
ADDRESS testargs)

VOobTraverse traverses all of the object’s subobjects and calls test (subobj, testargs) for each subobject. Continues
the traversal while test returns V_CONTINUE_TRAVERSAL. Aborts the traversal when test returns
V_HALT_TRAVERSAL.

test must be provided by the programmer to perform whatever operation is required. It should return a
BOOLPARAM, and must have two parameters: the subobject being processed, and the argument or argument block
required by the function. The argument can be NULL. If more than one argument is required, the argument block
should be a pointer to a structure that holds the arguments or addresses of the arguments required.

The test function is typically used in one of two ways:

1. to perform a particular operation on each subobject, or
2. to find a particular subobject.

In the first case, test should be written so that it always returns V_CONTINUE_TRAVERSAL. In the second case, test
should return V_HALT_TRAVERSAL if the subobject is found. Otherwise it should return
V_CONTINUE_TRAVERSAL. See the example below. VOobTraverse returns the boolean value of the last call to the
test function.

Note: You should not alter the object being traversed by adding, deleting, or reordering its subobjects during
traversal.

Example
The following code fragment draws all of the objects in a deque, dq:

BOOLPARAM draw_func (
OBJECT subobj,
ADDRESS drawport)

{
TdpDrawObject ((DRAWPORT) drawport, subobj);
return V_CONTINUE_TRAVERSAL;

}

OBJECT dq;
DRAWPORT drawport;

VOobTraverse (dq, draw_func, (ADDRESS)drawport)

VOobType

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Returns the type flag of the object.
int
VOobType (

OBJECT object)
VOobType returns the type flag of the object. The type flag can have one of the following values:

OT_ARC arc object
OT_CIRCLE circle object
OT_COLOR color object in non-RGB format
OT_DEQUE deque object
OT_DG data group object
OT_DRAWING drawing object
OT_DYNAMIC dynamic control object
OT_EDGE edge object
OT_ELLIPSE ellipse object
OT_ICON icon object
OT_IMAGE image object
OT_INPUT input object
OT_INPUT_TECHNIQU

E
input technique object

OT_LINE line object
OT_LOCATION location object
OT_NODE node object
OT_PIXMAP pixmap object
OT_POINT point object
OT_POLYGON polygon object
OT_RECTANGLE rectangle object
OT_REFCOLOR color object that refers to another color

object
OT_RGB color object in RGB format:

COLOR_COMPONENT or
COLOR_SPEC

OT_RULE rule object
OT_SCREEN screen object
OT_SLOTKEY slotkey object
OT_SUBDRAWING subdrawing object
OT_TEXT text object
OT_THRESHTABLE threshold table object
OT_VD variable descriptor object
OT_VTEXT vector text object
OT_XFORM transform object
Example

OBJECT location, object;
DRAWPORT dp;

object = TloGetSelectedObject (location);

if (VOobType (object) == OT_DG)
{

TdpDrawNextObject (dp, object);
}

VOobValid

VOob Functions VO Routines

VOob Modules: VOobDyUtil VOobBox VOobslotUtil
Determines if an object is valid.
BOOLPARAM
VOobValid (

OBJECT object)
VOobValid determines if an object is valid. A valid object is one that has been created properly and has not yet been
destroyed using VOobDereference. Returns YES if valid, NO otherwise.

VOobDyUtil Introduction
E xample
VOobDyDelete
VOobDyGet
VOobDySet

Introduction
Examples
Routines:
VOobBox
VOobXfBox
VOobXformBox
VOobXformBoxPadded

VOobSlotUtil Introduction
VOobDeleteSlot
VOobGetSlot
VOobHasSlot
VOobNumSlots
VOobSetSlot
VOobSupportsSlots

VOci (VOcircle)
VOci Functions VO Routines

Manages circle objects (ci). A circle object is defined by two point subobjects: a center point and a point on the
circumference. Circle attributes are foreground color, background color, fill status, line type, and line width. The
circle fill status can be FILL, EDGE, EDGE_WITH_FILL, FILL_WITH_EDGE, or DV_TRANSPARENT. When
EDGE is used, the boundary is drawn using the line attributes. A circle using DV_TRANSPARENT fill looks identical
to one with EDGE only, but you can select it with the cursor anywhere in the interior of the shape. A transparent
circle does not visually obscure objects behind it, but they cannot be selected through it. When either
EDGE_WITH_FILL or FILL_WITH_EDGE is used, the second feature listed in the fill status flag uses the
background color attribute. The foreground color is used in all other cases.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOci Functions
VOciAtGet See VOobAtGet.
VOciAtSet See VOobAtSet.
VOciBox See VOobBox.
VOciClone See VOobClone.
VOciCreate Creates a circle object.
VOciDereference See VOobDereference.
VOciIntersect See VOobIntersect.
VOciPtGet See VOobPtGet.
VOciPtSet See VOobPtSet.
VOciRefCount See VOobRefCount.
VOciReference See VOobReference.
VOciStatistic Returns statistics about circles.
VOciTraverse See VOobTraverse.
VOciValid See VOobValid.
VOciXfBox See VOobXfBox.
VOciXformBox See VOobXformBox.
A VOci routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOci routine to save the overhead of an additional routine call.

VOciCreate

VOci Functions VO Routines

Creates a circle object.

OBJECT
VOciCreate (

OBJECT center,
OBJECT radiuspt,
ATTRIBUTES *attributes)

VOciCreate creates and returns a circle object. radiuspt is a point on the circumference of the circle, and center is
the point around which the circle is drawn. Valid attributes field flags are:

FOREGROUND_COLOR FILL_STATUS
BACKGROUND_COLOR LINE_TYPE
LINE_WIDTH

If attributes is NULL, default values are used.

VOciStatistic

VOci Functions VO Routines

Returns statistics about circles.

LONG
VOciStatistic (

int flag)

VOciStatistic returns statistics about circles, depending on the value of flag. If flag is OBJECT_COUNT, returns the
current number of circles. Valid flag values are defined in VOstd.h.

VOco (VOcolor)
VOco Functions VO Routines

Manages color objects (co) and describes the color of graphical objects. There are three types of color objects. One
is represented by one byte of object type (OT_RGB) followed by three bytes of intensity in the range [0,255] (RGB
format), where each intensity corresponds to one of the three additive primaries, red, green, and blue. The second is
represented by one byte of object type (OT_COLOR) followed by a 24-bit integer representing the color in the
device-dependent format. Usually this is an index into the device’s color table, but it may be a true color if the
device supports direct color. The last type is represented by one byte of object type (OT_REFCOLOR) followed by a
16-bit integer that is the offset into the object heap for the referenced color object.

VOob VOdg VOel VOin VOno VOre VOsf VOu
Voar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOco Functions

VOcoClone See VOobClone.
VOcoCreate Creates a color or RGB object.
VOcoCsGet Gets color in the COLOR_SPEC structure

format.
VOcoDereference See VOobDereference.
VOcoIndex Returns color index corresponding to the color.
VOcoNdxGet Gets color in color index form for current

screen.
VOcoRefCount See VOobRefCount.
VOcoReference See VOobReference.
VOcoRefSwitch Switches current referenced color with new

color.
VOcoRgbGet Gets color in RGB form for current screen.
VOcoSubtype Returns color object subtype.
VOcoValid See VOobValid.
A VOco routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOco routine to save the overhead of an additional routine call.

VOcoCreate

VOco Functions VO Routines

Creates a color or RGB object.

OBJECT
VOcoCreate (

int format,
<type> arg1,
...,
<type> argn)

VOcoCreate creates and returns a color object in index, RGB, or referenced format. Possible format values are:

COLOR_COMPONENTSSpecifies color components. arg1, arg2, arg3 are the three primary color intensities in
the range [0,255].

COLOR_INDEX Specifies color index or device-dependent format. arg1 is the color (up to 24-bits).
COLOR_NAME Specifies the name of a color. arg1 is a pointer to a character string name that names

the color. Valid color name strings are:
black blue cyan
gray green grey
magenta red white
yellow

Note that on monochrome systems the color sense for black and white is the opposite of that on color systems. This
means that the color object with the color name black appears as white on a monochrome system.

COLOR_REFERENCE Specifies a reference to a color. arg1 is a color object created by a previous call to
VOcoCreate. This format lets several objects refer to the same color object.

COLOR_STRUCTURE Specifies the COLOR_SPEC structure. arg1 is a pointer to a COLOR_SPEC. See the
COLOR_SPEC typedef in the Include Files chapter.

VOcoCsGet

VOco Functions VO Routines

Gets color in the COLOR_SPEC structure format.

void
VOcoCsGet (

OBJECT color,
COLOR_SPEC *color_spec)

VOcoCsGet gets the color in the COLOR_SPEC structure format, color_spec. See the COLOR_SPEC typedef in the
Include Files chapter.

VOcoIndex

VOco Functions VO Routines

Returns the integer color index corresponding to the color.

LONG
VOcoIndex (

OBJECT color)

VOcoNdxGet

VOco Functions VO Routines

Returns a color object in index format for the current screen.

OBJECT
VOcoNdxGet (

OBJECT color)

VOcoRefSwitch

VOco Functions VO Routines

Switches current referenced color with new color.

BOOLPARAM
VOcoRefSwitch (

OBJECT clr,
OBJECT newclr)

VOcoRefSwitch switches the current referenced color of clr, with the new color, newclr. Returns DV_SUCCESS if
the switch is successful. Returns DV_FAILURE only if clr is not created as a referencing color object.

VOcoRgbGet

VOco Functions VO Routines

Gets color in RGB form for current screen.

OBJECT
VOcoRgbGet (

OBJECT color)

VOcoRgbGet returns a color object in RGB form. If the color object or the referenced color object is of type
OT_COLOR, the index is converted to RGB values from the color table for the current screen.

VOcoSubtype

VOco Functions VO Routines

Returns color object subtype.

int
VOcoSubtype (

OBJECT clr)

VOcoSubtype returns the subtype of the color object, clr. Returns NULL if clr is not a valid color object. Possible
returned subtypes are:

COLOR_INDEX color table index or device-dependent format
COLOR_COMPONENTS three color primaries in the range [0,255]
COLOR_REFERENCE referenced color object

If the color object was created with COLOR_NAME, VOcoSubtype returns COLOR_COMPONENTS.

If the color object was created with COLOR_STRUCTURE and COLOR_SPEC is RGB, VOcoSubtype returns
COLOR_COMPONENTS.

If the color object was created with COLOR_STRUCTURE and COLOR_SPEC is INDEX, VOcoSubtype returns
COLOR_INDEX.

VOdbg (VOdebug)
VOdbg Functions VO Routines

General debug and statistics routines. These routines can be called directly by the debugger on some systems and are
therefore not located in the library, but occur as source modules in the tooldebug subdirectory of the src directory.
Note that all references to “print” in the descriptions below refer to printing to the standard output.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vodbg Functions
VOdbgAttr Prints attributes data structure.
VOdbgCounts Prints the numbers of each kind of VO object.
VOdbgDqList Lists useful information about each object in the deque.
VOdbgOb Prints statistics about a specified object.
VOdbgObPts Prints the control points for a given object.

VOdbgAttr

VOdbg Functions VO Routines

Prints attributes data structure.

void
VOdbgAttr (

ATTRIBUTES *attributes)

VOdbgAttr prints every non-empty field of attributes. A non-empty field is any field not set to EMPTY_FIELD. For
example, fill status is reported as filled or non-filled, text direction as vertical or horizontal. Other information, such
as objects and dimensional or structural information, is given in hexadecimal or decimal form respectively.

VOdbgCounts

VOdbg Functions VO Routines

Prints the numbers of each kind of VO object.

void
VOdbgCounts (void)

VOdbgCounts counts and returns the number of VO objects allocated. Also gives the number of changes that have
occurred, if any, since the last time VOdbgCounts was called. Information is given in the following form:

bb : nn -cc or bb : nn +cc

where bb stands for the object (ar = arc, ci = circle, etc.), nn = how many objects are currently allocated, and (-)(+)
cc = is the change in the number of objects since the last call.

VOdbgDqList

VOdbg Functions VO Routines

Lists useful information about each object in the deque.

int
VOdbgDqList (

OBJECT deque)

VOdbgDqList calls VOdbgOb for all of the objects in a deque. If the deque is valid, information is printed about
every object in the deque. A non-valid deque prints nothing and returns a value of -1.

VOdbgOb

VOdbg Functions VO Routines

Prints statistics about a specified object.

int
VOdbgOb (

OBJECT object)

VOdbgOb prints information about the object, including its internal representation in hexadecimal, its type, its
attributes, and if valid, object-specific information.

VOdbgObPts

VOdbg Functions VO Routines

Prints the control points for a given object.

int
VOdbgObPts (

OBJECT object)

VOdbgObPts prints the world coordinate values of every control point of the object. Coordinates are printed as (x,y)
pairs. The routine also returns the number of control points if valid. Otherwise returns zero.

VOdg (VOdatagroup)
VOdg Functions VO Routines

Manages data group objects (dg). Data group objects, which are also called graphs, manage lower level data
structures known as data groups (dgp). Data groups contain variable descriptors (vdp) and one display formatter (df),
and are manipulated with the VPdg and VGdg routines. The variable descriptors supply the data group with data and
the display formatter describes how this data is to be displayed on the screen.

If a data group object is too large for its drawport, it is clipped to fit within the drawport boundary. A data group
object also gets clipped if it is obscured by another drawport.

Data group objects use foreground and background color attributes, and inherit foreground and background colors.
When they do not inherit foreground and background colors, the default colors are a white foreground on a black
background. Note that on monochrome systems the color sense for black and white is the opposite of the color sense
of black and white on color systems.

Data groups cannot be multiply referenced.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vodg Functions
VOdgAtGet See VOobAtGet.
VOdgAtSet See VOobAtSet.
VOdgBox See VOobBox.
VOdgClone See VOobClone.
VOdgCreate Creates a data group object.
VOdgDereference See VOobDereference.
VOdgGetDgp Returns the pointer to an object’s data group

structure.
VOdgIntersect See VOobIntersect.
VOdgIsDrawabl

e
Determines if the data group is drawable.

VOdgIsDrawn Determines if the data group has been drawn.
VOdgPtGet See VOobPtGet.
VOdgPtSet See VOdbPtSet
VOdgRefCount See VOobRefCount.
VOdgReference See VOobReference.
VOdgReset Resets the data group object to start at beginning.
VOdgStatistic Returns statistics about data group objects.
VOdgTraverse See VOobTraverse.
VOdgValid See VOobValid.
VOdgXfBox See VOobXfBox.
VOdgXformBox See VOobXformBox.
A VOdg routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOdg routine to save the overhead of an additional routine call.

VOdgCreate

VOdg Functions VO Routines

Creates a data group object.

OBJECT
VOdgCreate (

DATAGROUP dgp,
OBJECT ll,
OBJECT ur,
ATTRIBUTES *attributes)

VOdgCreate creates and returns a data group object defined by the lower left (ll) and upper right (ur) point
subobjects. If the data group structure, dgp, does not already exist, the routine creates a data group structure with a
default display formatter, VDbar, and creates and attaches one variable descriptor. Note that if you pass in a data
group structure, it is destroyed when the data group object is destroyed. Valid attributes field flags are:

FOREGROUND_COLOR
BACKGROUND_COLOR

VOdgGetDgp

VOdg Functions VO Routines

Returns the pointer to an object’s data group structure.

DATAGROUP
VOdgGetDgp (

OBJECT dg)

VOdgGetDgp returns the pointer to the data group structure being managed by the data group object, dg.

VOdgIsDrawable

VOdg Functions VO Routines

Determines if the data group is drawable.

BOOLPARAM
VOdgIsDrawable (

OBJECT dg,
OBJECT xform)

VOdgIsDrawable determines if the data group, dg, is drawable: that is, whether it can be rendered correctly with the
specified Xform, without errors such as “Viewport too small.” Drawability depends on constraints of the attached
display formatter and context flags set for the data group. VOdgIsDrawable checks drawability by cloning the data
group and passing the clone to VPdgsetup. After testing, destroys the clone. Returns DV_SUCCESS if the data group
is drawable. Otherwise, returns DV_FAILURE.

VOdgIsDrawable is not intended as a validity check and may give unpredictable results if you pass it an invalid data
group object. To check validity, use VOdgValid.

VOdgIsDrawn

VOdg Functions VO Routines

Determines if the data group has been drawn.

BOOLPARAM
VOdgIsDrawn (

OBJECT dg)

VOdgIsDrawn determines if the display formatter associated with the data group, dg, has been drawn. If the display
formatter has been set up and the context has been drawn, the display formatter is considered to be drawn. Returns
YES if the display formatter is drawn. Otherwise, returns NO.

VOdgReset

VOdg Functions VO Routines

Resets the data group object to start at beginning.

void
VOdgReset (

OBJECT dg)

VOdgReset resets the data group object, dg, to its initial state. The next time the data group is drawn, the graph’s
context is redrawn. This also frees temporary storage allocated the last time the graph ran.

VOdgStatistic

VOdg Functions VO Routines

Returns statistics about data group objects.

LONG
VOdgStatistic (

int flag)

VOdgStatistic returns statistics about data groups, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, VOdgStatistic returns the current number of data groups.

VOdq (VOdeque)
VOdq Functions VO Routines

Manages deque objects (dq). Deques are used to manage lists of objects. For example, drawing objects maintain
their contents by using deques of graphical objects. Deques can also be used to manage lists of non-objects that fit
into a LONG. For lists of non-objects, use VOdqCreateGeneric to create a deque of non-objects. Then use the
other routines normally.

Objects can be inserted at the top or bottom of the deque or at a specific index position in the deque. Objects can be
deleted by their object id or by their position in the deque. You can also insert and delete deques of objects. Objects
anywhere in the list can be accessed by their index value in the deque. The index starts at 1 on the bottom of the
deque and increases to the maximum index at the top of the deque. As with all subobjects, the items in the deque can
be shared with other deques.

When objects are added to or deleted from deques using these routines, reference counts for the objects are handled
automatically.

The deque should more accurately be called a list manager; however, the name deque is retained for historical
purposes.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vodq Functions
VOdqAdd Adds an object at the top or the bottom of a

deque.
VOdqAddDq Adds a deque of objects to the top or the bottom

of a deque.
VOdqAddDqIndexe

d
Adds a deque of objects after the given index.

VOdqAddIndexed Adds an object after the given index.
VOdqClone See VOobClone.
VOdqCreate Creates a deque of objects.
VOdqCreateGeneric Creates a deque of non-objects.
VOdqDelete Deletes an object from the deque.
VOdqDeleteAll Deletes all entries from the deque.
VOdqDeleteDq Deletes a deque of objects from the deque.
VOdqDeleteIndexed Deletes the object at a given index.
VOdqDereference See VOobDereference.
VOdqGetEntry Returns the object at a given index position in the

deque.
VOdqHasEntry Determines if the object is in the deque and

returns its index.
VOdqRefCount See VOobRefCount.
VOdqReference See VOobReference.
VOdqReplaceEntry Replaces one object in the deque with another.
VOdqSize Gets the number of entries in the deque.
VOdqSort Sorts the deque using a user-supplied

comparison.
VOdqStatistic Returns statistics about deques.
VOdqSwapEntries Swaps two entries in the table.
VOdqTraverse See VOobTraverse.
VOdqValid See VOobValid.
VOdqVersion Gets the version number of the deque.
A VOdq routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOdq routine to save the overhead of an additional routine call.

VOdqAdd

VOdq Functions VO Routines

Adds an object at the top or the bottom of a deque.

void
VOdqAdd (

OBJECT deque,
int position,
OBJECT object)

VOdqAdd adds the object to the top or the bottom of deque as specified by position. position can be either TOP, for
the top of the list, or BOTTOM, for the bottom of the list.

VOdqAddDq

VOdq Functions VO Routines

Adds a deque of objects to the top or the bottom of a deque.

void
VOdqAddDq (

OBJECT deque,
int position,
OBJECT obdeque)

VOdqAddDq adds a deque of objects to the top or the bottom of deque as specified by position. position can be
either TOP for the top of the list, or BOTTOM for the bottom of the list.

VOdqAddDqIndexed

VOdq Functions VO Routines

Adds a deque of objects after the given index.

void
VOdqAddDqIndexed (

OBJECT deque,
int index,
OBJECT obdeque)

VOdqAddDqIndexed adds a deque of objects to the deque after the given index position. Because the index values
are 1-based, an index of 0 means to add the object to the beginning.

VOdqAddIndexed

VOdq Functions VO Routines

Adds an object after the given index.

void
VOdqAddIndexed (

OBJECT deque,
int index,
OBJECT object)

VOdqAddIndexed adds an object to the deque after the given index position. Because the index values are 1-based,
an index of 0 means to add the object to the beginning.

VOdqCreate

VOdq Functions VO Routines

Creates a deque of objects.

OBJECT
VOdqCreate (

int initial_size)

VOdqCreate creates and returns an empty deque object. initial_size specifies the initial memory to allocate for
storing the contents of the deque. Allocating initial memory is only an efficiency measure since the deque object
allocates new memory if it grows beyond this size. If initial_size is NULL, a default of 10 is used.

VOdqCreateGeneric

VOdq Functions VO Routines

Creates a deque of non-objects.

OBJECT
VOdqCreateGeneric (

int initial_size,
VODQADDFUNPTR addfun,
VODQDELFUNPTR delfun,
VODQEQUALFUNPTR is_equalfun)

OBJECT
addfun (

OBJECT entity)

void
delfun (

OBJECT entity)

BOOLPARAM
is_equalfun (

OBJECT entity1,
OBJECT entity2)

VOdqCreateGeneric creates a deque object that contains non-objects. You can specify functions to be called before
the entity is added to the list and before it is deleted from the list. The entity that is added or deleted must fit into an
OBJECT, which is type LONG. addfun should be defined to take an entity and return the entity_to_be_added. delfun
should be defined to free or decrement the reference count of entity. is_equalfun should be defined to take entity1
and entity2 and return YES if they are equal. Otherwise, should return NO.

VOdqDelete

VOdq Functions VO Routines

Deletes an object from the deque.

void
VOdqDelete (

OBJECT deque,
OBJECT object)

VOdqDeleteAll

VOdq Functions VO Routines

Deletes all entries from the deque.

void
VOdqDeleteAll (

OBJECT deque)

VOdqDeleteAll removes all entries from the deque. This routine sets the empty slots to NULL.

VOdqDeleteDq

VOdq Functions VO Routines

Deletes a deque of objects from the deque.

void
VOdqDeleteDq (

OBJECT deque,
OBJECT obdeque)

VOdqDeleteDq removes a deque of objects from the deque. Any obdeque objects that are in deque are removed from
deque.

VOdqDeleteIndexed

VOdq Functions VO Routines

Deletes the object at a given index.

void
VOdqDeleteIndexed (

OBJECT deque,
int position)

VOdqDeleteIndexed deletes the object at the specified position in the deque. position is the 1-based index of the
entry in the deque.

VOdqGetEntry

VOdq Functions VO Routines

Returns the object at a given index position in the deque.

OBJECT
VOdqGetEntry (

OBJECT deque,
int index)

VOdqGetEntry searches the deque for the object specified by the index and returns the object. An index of 1 refers to
the bottom of the list.

VOdqHasEntry

VOdq Functions VO Routines

Determines if the object is in the deque and returns its index.

int
VOdqHasEntry (

OBJECT deque,
OBJECT object)

VOdqHasEntry searches the deque for the object. Returns the object’s index if the object is found. Otherwise returns
zero. An index of 1 refers to the bottom of the list.

VOdqReplaceEntry

VOdq Functions VO Routines

Replaces one object in the deque with another.

void VOdqReplaceEntry (
OBJECT deque,
int position,
OBJECT object)

VOdqReplaceEntry replaces an indexed object in the deque with another object. Use VOdqHasEntry to determine
the index position of the object.

VOdqSize

VOdq Functions VO Routines

Returns the number of entries in the deque.

int
VOdqSize (

OBJECT deque)

VOdqSort

VOdq Functions VO Routines

Sorts the deque using a user-supplied comparison.

void
VOdqSort (

OBJECT deque,
VODQCOMPAREFUNPTR compare_fun)

int
compare_fun (

OBJECT entry1,
OBJECT entry2)

VOdqSort sorts the deque according to the caller-supplied comparison function, compare_fun. compare_fun should
be defined to return the following values:

-1 if entry1 < entry2
0 if entry1 == entry2

+1 if entry1 > entry2

VOdqStatistic

VOdq Functions VO Routines

Returns statistics about deques.

LONG
VOdqStatistic (

int flag)

VOdqStatistic returns statistics about deques, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of deques.

VOdqSwapEntries

VOdq Functions VO Routines

Swaps two entries in the table.

void
VOdqSwapEntries (

OBJECT deque,
int position1,
int position2)

VOdqSwapEntries swaps the entry in position1 with the entry in position2 in the specified deque.

VOdqVersion

VOdq Functions VO Routines

Gets the version number of the deque.

LONG
VOdqVersion (

OBJECT deque)

VOdqVersion returns the version number of the specified deque. The version number of a deque starts at zero and is
incremented every time the deque contents are changed by adding, deleting, replacing, sorting, or swapping entries.

VOdr (VOdrawing)
VOdr Functions VO Routines

Manages drawing objects (dr). A drawing object contains a deque of graphical objects and an associated name list
for named objects. It also contains a foreground color, which is used to draw objects that have no foreground color
of their own, and a background color, which is used to erase objects in the drawing. A drawing can be viewed in one
or more drawports and it can contain any of the graphical objects. Many of the operations on drawings can be
handled at the T level by the Tdr, Tdp, and Tvi routines.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vodr Functions
VOdrAddName Names an object in the drawing.
VOdrBackcolor Sets the drawing’s background color.
VOdrBounds Gets drawing boundary given a transformation.
VOdrBox See VOobBox.
VOdrClone See VOobClone.
VOdrCreate Creates a drawing object.
VOdrDeleteName Deletes the name of an object in the drawing.
VOdrDereference See VOobDereference.
VOdrForecolor Sets the drawing’s foreground color.
VOdrGetName Gets the name of an object.
VOdrGetNamedObjec

t
Gets the object with a name.

VOdrGetObjectDeque Gets the deque object containing the drawing’s
objects.

VOdrGetScale Gets the default scale for a drawing.
VOdrIntersect See VOobIntersect.
VOdrNameTraverse Traverses the drawing’s name list.
VOdrObAdd Adds an object to the drawing.
VOdrObAddNamed Adds a named object to the drawing.
VOdrObBottom Moves an object to the bottom of the drawing.
VOdrObDelete Deletes an object from the drawing.
VOdrObReplace Replaces the current object with a new object.
VOdrObTop Moves an object to the top of the drawing.
VOdrOffcolor Sets the color of the off-drawing region.
VOdrRefCount See VOobRefCount.
VOdrReference See VOobReference.
VOdrSetScale Sets the default scale for a drawing.
VOdrStatistic Returns statistics about drawings.
VOdrTraverse See VOobTraverse.
VOdrValid See VOobValid.
VOdrXfBox See VOobXfBox.
VOdrXformBox See VOobXformBox.
A VOdr routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOdr routine to save the overhead of an additional routine call.

VOdrAddName

VOdr Functions VO Routines

Names an object in the drawing.

void
VOdrAddName (

OBJECT drawing,
OBJECT object,
char *name)

VOdrAddName assigns a name string, name, to the object in the drawing. Does nothing if the object is not in the
drawing.

VOdrBackColor

VOdr Functions VO Routines

Sets the drawing’s background color.

OBJECT
VOdrBackcolor (

OBJECT drawing,
OBJECT color)

VOdrBackcolor sets the drawing’s background color. Returns the old color. Special values of color have the
following meanings:

NULL The drawing’s background inherits the screen background color.
NO_BACKGROUND The background is to be transparent.
DONT_SET_THE_VALUE The color remains unchanged. Returns the current color.

VOdrBounds

VOdr Functions VO Routines

Gets drawing boundary given a transformation.

void
VOdrBounds (

OBJECT xform,
RECTANGLE *bounds)

VOdrBounds gets the boundary, bounds, of the whole world coordinate space, expressed in screen coordinates, after
being transformed by the transformation xform.

VOdrCreate

VOdr Functions VO Routines

Creates a drawing object.

OBJECT
VOdrCreate (void)

VOdrCreate creates and returns a drawing object. A drawing uses foreground and background color attributes.

VOdrDeleteName

VOdr Functions VO Routines

Deletes the name of an object in the drawing.

void
VOdrDeleteName (

OBJECT drawing,
OBJECT object)

VOdrDeleteName deletes the name of object in drawing. Does nothing if the object is not in the drawing.

VOdrForecolor

VOdr Functions VO Routines

Sets the drawing’s foreground color.

OBJECT
VOdrForecolor (

OBJECT drawing,
OBJECT color)

VOdrForecolor sets the drawing’s foreground color. Returns the old color. If the color flag is NULL, the drawing
inherits the screen foreground color. If the color flag is DONT_SET_THE_VALUE, the color remains unchanged and
the routine returns the current color.

VOdrGetName

VOdr Functions VO Routines

Gets the name of an object.

char *
VOdrGetName (

OBJECT drawing,
OBJECT object)

VOdrGetName returns the name of object in drawing. Returns a pointer to an internal string which should not be
modified.

VOdrGetNamedObject

VOdr Functions VO Routines

Gets the object with a name.

OBJECT
VOdrGetNamedObject (

OBJECT drawing,
char *name)

VOdrGetNamedObject searches drawing for the first object with the name, name. Returns the object if successful.
Otherwise returns NULL.

VOdrGetObjectDeque

VOdr Functions VO Routines

Gets the deque object containing the drawing’s objects.

OBJECT
VOdrGetObjectDeque (

OBJECT drawing)

VOdrGetObjectDeque returns the deque object containing all the objects in drawing. This deque is an internal
structure that should be modified with care. For most actions such as adding, deleting, or reordering objects, you
should operate on the drawing object using VOdr routines instead of operating on the deque.

VOdrGetScale

VOdr Functions VO Routines

Gets the default scale for a drawing.

double
VOdrGetScale (

OBJECT drawing)

VOdrGetScale returns the default scale factor associated with the drawing. If the drawing has no default scale factor,
this routine returns 0, which is an invalid scale factor.

VOdrNameTraverse

VOdr Functions VO Routines

Traverses the drawing’s name list.

ADDRESS
VOdrNameTraverse (

OBJECT drawing,
VODRNAMETRVRSFUNPTR fun,
ADDRESS args)

ADDRESS
fun (

OBJECT object,
char *object_name,
ADDRESS args)

VOdrNameTraverse traverses all the named objects in the drawing and calls fun (object, object_name, args) for each
named object. Continues traversal while fun returns NULL or V_CONTINUE_TRAVERSAL. Aborts the traversal
when fun returns a non-NULL ADDRESS or V_HALT_TRAVERSAL. The return value of the traversal is the return
value of the last call to fun.

fun must be provided by the programmer to perform whatever operation is required. It should return an ADDRESS,
and must have three parameters: the object being processed, the name of the object, and the argument or argument
block required by the function. The argument can be NULL. If more than one argument is required, the argument
block should be a pointer to a structure that holds the arguments or addresses of the arguments required.

The fun function is typically used in one of two ways:

1) to perform a particular operation on each named object in the drawing, or
2) to find a particular object with a given name.

In the first case, fun should be written so that it always returns V_CONTINUE_TRAVERSAL or NULL for
ADDRESS. In the second case, fun should return a NULL value for ADDRESS if the object is not found. Otherwise it
should return the ADDRESS of the object.

Note: You should not alter the drawing by adding, deleting, or reordering the named objects during traversal.

For an example of a typical function, see the example under TdrForEachNamedObject.

VOdrObAdd

VOdr Functions VO Routines

Adds an object to the drawing.

BOOLPARAM
VOdrObAdd (

OBJECT drawing,
OBJECT object)

VOdrObAdd adds the object to the top of the drawing deque. When drawn, the added object is drawn last, in front of
the other objects in the drawing. Returns YES if successful. Otherwise returns NO.

VOdrObAddNamed

VOdr Functions VO Routines

Adds a named object to the drawing.

BOOLPARAM
VOdrObAddNamed (

OBJECT drawing,
OBJECT obj,
char *name;

VOdrObAddNamed adds the named object to the top of the drawing queue. It combines the features of VOdrObAdd
and VOdrAddName. When drawn, the added object is drawn last, in front of the other objects in the drawing.
Returns YES if successful. Otherwise returns NO.

VOdrObBottom

VOdr Functions VO Routines

Moves an object to the bottom of the drawing.

void
VOdrObBottom (

OBJECT drawing,
OBJECT object)

VOdrObBottom moves the object to the bottom of the drawing. When drawn, the object is drawn first, behind the
other objects in the drawing.

VOdrObDelete

VOdr Functions VO Routines

Deletes an object from the drawing.

BOOLPARAM
VOdrObDelete (

OBJECT drawing,
OBJECT object)

VOdrObDelete deletes the object from the drawing. Returns YES if successful. Otherwise returns NO.

VOdrObReplace

VOdr Functions VO Routines

Replaces the current object with a new object.

BOOLPARAM
VOdrObReplace (

OBJECT drawing,
OBJECT currobj,
OBJECT newobj)

VOdrObReplace replaces the current object with a new object. This routine ensures that when a named object is
replaced, the new object receives the name of the replaced object. The replaced object is dereferenced. Returns NO
if one or both objects do not exist.

VOdrObTop

VOdr Functions VO Routines

Moves an object to the top of the drawing.

void
VOdrObTop (

OBJECT drawing,
OBJECT object)

VOdrObTop moves the object to the top of the drawing. When drawn, the object is drawn last, in front of the other
objects in the drawing.

VOdrOffcolor

VOdr Functions VO Routines

Sets the color of the off-drawing region.

OBJECT
VOdrOffcolor (

OBJECT color)

VOdrOffcolor sets the color object, color, to be used when drawing the region beyond the drawing’s coordinates.
This routine sets a global variable, used for all drawings, and is not associated with a particular drawing object. If
the color parameter has the value DONT_SET_THE_VALUE, the current off-drawing color is returned. If the color
parameter has the value NO_OFF_DRAWING_COLOR, then the off-drawing region is not drawn and appears
transparent. The default off-drawing region color is the background color of the drawing object.

VOdrSetScale

VOdr Functions VO Routines

Sets the default scale for a drawing.

void
VOdrSetScale (

OBJECT drawing,
double scale)

VOdrSetScale sets the default scale factor for the drawing. A scale value of zero means to delete the current scale
factor. Zero is an invalid scale factor.

VOdrStatistic

VOdr Functions VO Routines

Returns statistics about drawings.

LONG
VOdrStatistic (

int flag)

VOdrStatistic returns statistics about drawings, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of drawing objects.

VOdy (VOdynamic)
VOdy Functions VO Routines

Manages dynamic control objects. A dynamic control object is used to describe and control the dynamic behavior of
associated graphical objects.

The VOobDyUtil module contains routines that manage the connection between dynamic control objects and
graphical objects. To access a dynamic control object using the name assigned in DV-Draw, see
VOuObMatchNameSlots.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vody Functions
VOdyAttachData Attaches a data object to a dynamic control

object.
VOdyChanged Determines if a graphical object’s dynamic

control object has changed.
VOdyClone See VOobClone.
VOdyCreate Creates a dynamic control object.
VOdyDetachData Detaches a data object from the dynamic

control object.
VOdyGetDataObj Returns the index-th data object attached to

dynamic control object.
VOdyGetEraseColor Gets the erase color for a dynamic control

object.
VOdyGetEraseMetho

d
Gets the erase method for a dynamic control

object.
VOdyGetPath Gets the polygon path for a dynamic action.
VOdyGetRange Gets the range for a specific dynamic action.
VOdyGetRefPoint Gets the reference point of a dynamic action

that uses a reference point.
VOdyGetTextFormat Gets the text format for text dynamics.
VOdyReset Returns a graphical object to its original state

before dynamics were applied.
VOdySetEraseColor Sets the erase color for a dynamic control

object.
VOdySetEraseMethod Sets the erase method for a dynamic control

object.
VOdySetPath Sets the polygon path for a dynamic action.
VOdySetRange Sets the range for a specific dynamic action.
VOdySetRefPoint Sets the reference point of a dynamic action

that uses a reference point.
VOdySetState Sets the state of an object’s dynamic control

object to YES or NO.
VOdySetTextFormat Sets the text format for text dynamics.
VOdyTraverse See VOobTraverse.
VOdyUpdate Updates the current dynamics for a given

object.
VOdyValid See VOobValid.
A VOdy routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOdy routine to save the overhead of an additional routine call.

VOdyAttachData

VOdy Functions VO Routines

Attaches a data object to a dynamic control object.

BOOLPARAM
VOdyAttachData (

OBJECT dycontrol_obj,
int dyn_action_flag,
OBJECT data_obj,
float *low_range,
float *high_range,
OBJECT ref_point,
OBJECT polygon_path)

VOdyAttachData activates a dynamic action and attaches a data object to the dynamic control object, dycontrol_obj.
dyn_action_flag indicates the action that becomes dynamic. data_obj provides the changing data for the dynamic
action. A data object can be either a threshold table or a variable descriptor object. The other parameters, low_range,
high_range, ref_point, and polygon_path are used only for specific dynamic actions. The range parameters are used
only if the data object is a variable descriptor object. The reference point can be used for certain transformation
dynamics. The polygon path is used for the dynamic action for movement along a path.

Visibility Dynamics: Changes whether or not a graphical object is visible. This dynamic action is defined by the
dynamic action flag, V_DYN_VISIBILITY, and a threshold table. The output values in the threshold table must be
YES or NO. When the object is not visible, its other dynamic actions are still updated. When the object becomes
visible, it reflects the current state of these dynamic actions. An object must be visible to be pickable using
TloGetSelectedObject or TloGetSelectedObjectName, or to have its event requests serviced. The
V_DYN_ERASE_XOR and V_DYN_ERASE_NONE erase methods are not useful for visibility dynamics.

Transformation Dynamics: The following table shows the action flags for transformation dynamics and the
parameters that each uses. All transformation dynamic actions use the low_range and high_range parameters. The
data object should be a variable descriptor object.

dynamic action flag reference points polygon path
V_DYN_ROTATE optional
V_DYN_PATH_MOVE optional yes
V_DYN_REL_MOVE_X no
V_DYN_REL_MOVE_Y no
V_DYN_ABS_MOVE_X optional
V_DYN_ABS_MOVE_Y optional
V_DYN_SCALE optional
V_DYN_SCALE_X optional
V_DYN_SCALE_Y optional

The parameters low_range and high_range ensure that the graphical object receives valid data from a variable
descriptor object. The incoming data range is determined by the data object’s variable descriptor. The outgoing data
range is set using low_range and high_range. The incoming data range is mapped to the outgoing data range. For
example, rotation might have an incoming range of [0,1] mapped to an outgoing data range of [0,360].

A reference point can be specified for dynamic actions that involve rotation, absolute movement, scaling, and
movement along a path. If the value of ref_pt is NULL, the graphical object’s center is used as the reference point
for transformation dynamics.

Certain transformation dynamics can be defined more than once using different data objects. It is also effective to

use different reference points. The dynamic action flags that can be used more than once in a dynamic control object
are V_DYN_ROTATE, V_DYN_REL_MOVE_X, V_DYN_REL_MOVE_Y, V_DYN_SCALE, V_DYN_SCALE_X, and
V_DYN_SCALE_Y.

Attribute Dynamics: Dynamic actions that change object attributes are defined by an action flag and a data object.
No additional parameters are required. While some attribute dynamics can use a variable descriptor object directly,
using a threshold table is recommended. Valid attribute action flags are:

FOREGROUND_COLOR BACKGROUND_COLOR
FILL_STATUS LINE_TYPE
LINE_WIDTH TEXT_DIRECTION
ARC_DIRECTION CURVE_TYPE
TEXT_FONTNAME TEXT_POSITION
TEXT_FONT TEXT_SIZE
TEXT_WIDTH TEXT_HEIGHT
TEXT_ANGLE TEXT_SLANT
TEXT_CHARSPACE TEXT_LINESPACE
TEXT_NAME

Proportional Fill: Proportional Fill is a special case of attribute dynamics that works only on objects that have the
fill status attribute set to FILL, EDGE_WITH_FILL, or FILL_WITH_EDGE. The data object value is mapped to the
percentage of the object to be filled, which is set using high_range and low_range. A variable descriptor object is
recommended as the data object. The direction of the proportional fill is specified by one of the following dynamic
action flags: V_DYN_FILL_RIGHT, V_DYN_FILL_UP, V_DYN_FILL_LEFT, V_DYN_FILL_DOWN.

Text Dynamics: Displays the formatted variable value. The variable can be embedded in a text string. The dynamic
action flag is V_DYN_TEXT and works only on text or vector text objects. The data object should be a variable
descriptor object. VOdySetTextFormat sets the format string. The V_DYN_ERASE_XOR and V_DYN_ERASE_NONE
erase methods are not useful for text dynamics.

Subdrawing Dynamics: The subdrawing dynamic action is defined by the dynamic action flag,
V_DYN_SUBDRAWING, and a threshold table. Each element of the threshold table is associated with a subdrawing
object.

Returns DV_SUCCESS or DV_FAILURE.

VOdyChanged

VOdy Functions VO Routines

Determines if a graphical object’s dynamic control object has changed.

BOOLPARAM
VOdyChanged (

OBJECT dycontrol_obj,
OBJECT graphical_obj)

VOdyChanged determines if dycontrol_obj, associated with graphical_obj, has changed since the last update of the
data. Returns YES if the dynamic control object has changed. Otherwise returns NO.

VOdyCreate

VOdy Functions VO Routines

Creates a dynamic control object.

OBJECT
VOdyCreate (void)

VOdyCreate creates a dynamic control object with no associated dynamic actions or graphical objects. Use
VOdyAttachData to add dynamic actions to the dynamic control object and VOobDySet to associate the dynamic
control object with a graphical object. If successful, returns a new dynamic control object. Otherwise returns NULL.

VOdyDetachData

VOdy Functions VO Routines

Detaches a data object from the dynamic control object.

void
VOdyDetachData (

OBJECT dycontrol_obj,
int dyn_action_flag)

VOdyDetachData removes the dynamic action associated with dyn_action_flag from dycontrol_obj. Passing a NULL
data_obj causes the first dynamic action with dyn_action_flag to be removed. See also VOdyAttachData.

VOdyGetDataObj

VOdy Functions VO Routines

Returns the index-th data object attached to a dynamic control object.

OBJECT
VOdyGetDataObj (

OBJECT dycontrol_obj,
int dyn_action_flag,
int index)

VOdyGetDataObj returns the data object attached to dycontrol_obj that is associated with dyn_action_flag. The data
object can be either a threshold table object or a variable descriptor object. Most dynamic action flags can only have
one data object in a particular dynamic control object. Only the absolute movement, scaling, and rotation actions can
be defined with more than one data object. To distinguish between multiple data objects for the same dynamic
action, use index, where the value of index can range from 1 to the total number of data objects. To determine the
number of data objects for a particular dynamic action, set index to 0 and this routine returns the number as the
return value. If only one data object supplies data for a dynamic action, set index to 1. VOdyGetDataObj returns
NULL if index is greater than the total number of data objects for a given dynamic action.

VOdyGetEraseColor

VOdy Functions VO Routines

Returns the erase color for a dynamic control object.

OBJECT
VOdyGetEraseColor (

OBJECT dycontrol_obj)

Returns the erase color object for a dynamic control object, dycontrol_obj, or returns V_NO_COLOR.

VOdyGetEraseMethod

VOdy Functions VO Routines

Gets the erase method for a dynamic control object.

int
VOdyGetEraseMethod (

OBJECT dycontrol_obj)

VOdyGetEraseMethod returns the erase method for dycontrol_obj. See VOdySetEraseMethod for a list of valid erase
method flags.

VOdyGetPath

VOdy Functions VO Routines

Gets the polygon path for a dynamic action.

OBJECT
VOdyGetPath (

OBJECT dycontrol_obj,
int dyn_action_flag,
OBJECT data_obj)

VOdyGetPath returns the polygon path for the dynamic action defined with the flag V_DYN_PATH_MOVE. Returns
NULL if no polygon path is defined.

VOdyGetRange

VOdy Functions VO Routines

Gets the range for a specific dynamic action.

BOOLPARAM
VOdyGetRange (

OBJECT dycontrol_obj,
int dyn_action_flag,
OBJECT data_obj,
float *low_rangep,
float *high_rangep)

VOdyGetRange gets the range for the dynamic action specified by dyn_action_flag and data_obj. The range is
passed back in low_rangep and high_rangep. Some transformation dynamic actions can receive data from more than
one data object; in this case, use data_obj to distinguish between them. If data_obj is NULL, gets the range
corresponding to the first data object for the specified dynamic action. Returns DV_SUCCESS or DV_FAILURE.

VOdyGetRefPoint

VOdy Functions VO Routines

Gets the reference point of a dynamic action that uses a reference point.

OBJECT
VOdyGetRefPoint (

OBJECT dycontrol_obj,
int dyn_action_flag,
OBJECT data_obj)

VOdyGetRefPoint returns the reference point for a dynamic action that uses a reference point. The dynamic actions
rotation, scaling, absolute move, and movement along a path use reference points. Rotation and scaling actions can
receive data from more than one data object; in this case, use data_obj to distinguish between them. If data_obj is
NULL, returns the reference point corresponding to the first data object for the specified dynamic action.

VOdyGetTextFormat

VOdy Functions VO Routines

Gets the text format for text dynamics.

char *
VOdyGetTextFormat (

OBJECT dycontrol_obj,
int dyn_action_flag)

VOdyGetTextFormat returns the string used to format the variable value associated with the text dynamics action.
Use V_DYN_TEXT for dyn_action_flag. dycontrol_obj is the dynamic control object. Returns NULL if the action
isn’t valid for the dynamic object.

VOdyReset

VOdy Functions VO Routines

Returns a graphical object to its original state before dynamics were applied.

void
VOdyReset (

OBJECT dycontrol_obj,
OBJECT graphical_obj)

VOdyReset resets graphical_obj to its original state. Its original state consists of the graphical object’s original
points and attributes before any dynamics were applied. If graphical_obj parameter is NULL, resets all the graphical
objects associated with dycontrol_obj.

VOdySetEraseColor

VOdy Functions VO Routines

Sets the erase color for a dynamic object.

BOOLPARAM
VOdySetEraseColor (

OBJECT dycontrol_obj,
OBJECT color)

VOdySetEraseColor sets the erase color for a dynamic control object, dycontrol_obj, that uses the
V_DYN_ERASE_BOX or V_DYN_ERASE_OBJECT erase method. The color can be set at any time, regardless of the
current erase method setting. The setting is initialized to V_NO_COLOR, and you can clear a color setting by setting
the color to V_NO_COLOR. If V_NO_COLOR, the drawing’s background color is used. Returns DV_SUCCESS or
DV_FAILURE.

VOdySetEraseMethod

VOdy Functions VO Routines

Sets the erase method for a dynamic control object.

BOOLPARAM
VOdySetEraseMethod (

OBJECT dycontrol_obj,
int erase_method)

VOdySetEraseMethod specifies the erase method for dycontrol_obj. Valid erase method flags are:

V_DYN_ERASE_REDRAW_IMMEDIATE - Redraws the objects that were obscured by and obscuring the
dynamic object immediately after this object has moved.

V_DYN_ERASE_REDRAW_DELAY - Redraws the objects that were obscured by and obscuring the dynamic
object after all dynamic objects have moved.

V_DYN_ERASE_RASTER - Redraws the affected portion of the screen using the raster information saved
before drawing the dynamic object in its new position. Not supported on all systems.

V_DYN_ERASE_BOX - Erases the dynamic object by redrawing the area inside the dynamic object’s
bounding box either in the drawing’s background color or in a color specified by VOdySetEraseColor.

V_DYN_ERASE_OBJECT - Erases the dynamic object by redrawing the dynamic object either in the
drawing’s background color or in a color specified by VOdySetEraseColor.

V_DYN_ERASE_XOR - Erases the object by XORing the object’s bits. Not supported on all systems. Not
useful for visibility or text dynamics.

V_DYN_ERASE_NONE - No erase occurs. Leaves all versions of the dynamic object on the screen until a
subsequent action draws over them. Not useful for visibility or text dynamics.

Returns DV_SUCCESS or DV_FAILURE.

VOdySetPath

VOdy Functions VO Routines

Sets the polygon path for a dynamic action.

BOOLPARAM
VOdySetPath (

OBJECT dycontrol_obj,
int dyn_action_flag,
OBJECT data_obj,
OBJECT polygon_path)

VOdySetPath sets the polygon path for a dynamic action that is defined using the V_DYN_PATH_MOVE dynamic
action flag.

VOdySetRange

VOdy Functions VO Routines

Sets the range for a specific dynamic action.

BOOLPARAM
VOdySetRange (

OBJECT dycontrol_obj,
int dyn_action_flag,
OBJECT data_obj,
float *low_range,
float *high_range)

VOdySetRange sets the ranges for a specific dynamic action affecting the dynamic control object to values pointed to
by low_range and high_range. If either of the pointers holding the ranges is NULL, the dynamic action is reset to
indicate that there is no range. Some transformation dynamic actions can receive data from more than one data
object; in this case, use data_obj to distinguish between them. If data_obj is NULL, sets the range corresponding to
the first data object for the specified dynamic action. Returns DV_SUCCESS or DV_FAILURE.

VOdySetRefPoint

VOdy Functions VO Routines

Sets the reference point of a dynamic action that uses a reference point.

BOOLPARAM
VOdySetRefPoint (

OBJECT dycontrol_obj,
int dyn_action_flag,
OBJECT data_obj,
OBJECT point)

VOdySetRefPoint sets the reference point for a dynamic action that uses a reference point. The dynamic actions
rotation, scaling, absolute move, and movement along a path can use reference points. Rotation and scaling actions
can receive data from more than one data object; in this case, use data_obj to distinguish between them. If data_obj
is NULL, sets the reference point corresponding to the first data object for the specified dynamic action. Returns
DV_SUCCESS or DV_FAILURE.

VOdySetState

VOdy Functions VO Routines

Sets the state of an object’s dynamic control object to YES or NO.

BOOLPARAM
VOdySetState (

OBJECT dycontrol_obj,
OBJECT graphical_obj,
int state)

VOdySetState sets the dynamic state of graphical_obj to be on (YES) or off (NO). When state is YES, which is the
default, dynamic changes occur every time VOdyUpdate is called. When state is NO, no dynamic changes take
place. If graphical_obj is NULL, VOdySetState sets the state for all graphical objects associated with the dynamic
control object.

The state is not normally saved when you save a view containing the dynamic control object, or restored when you
load a view file. To save or restore the state, set the configuration variable DVSAVEDYNSTATE to yes. Note that
setting the state to NO and saving does not save a graphical object in its current state. The only additional
information saved is whether or not the graphical object is to be updated.

Returns DV_SUCCESS or DV_FAILURE.

VOdySetTextFormat

VOdy Functions VO Routines

Sets the text format for text dynamics.

BOOLPARAM
VOdySetTextFormat (

OBJECT dycontrol_obj,
int dyn_action_flag,
char *format)

VOdySetTextFormat specifies the format string to be used with the V_DYN_TEXT dyn_action_flag. You can specify
the format using the following C printf() conversion characters:

Variable Type Conversion Characters
V_T_TYPE s
V_D_TYPE_ and V_F_TYPE f, e, E, g, G
all others d, i, o, u, x, X

The conversion character can be embedded in a text string. For example: "volume=%6.2f", "score=%d%%",
"account name:%s"

The default formats are "%s", "%f", "%d". If the format is NULL, a default (%s, %f, or %d) corresponding to the
type of data is assigned. Returns DV_FAILURE if the dynamic action is not activated. Otherwise returns
DV_SUCCESS.

VOdyUpdate

VOdy Functions VO Routines

Updates the current dynamics for a given object.

void
VOdyUpdate (

OBJECT dycontrol_obj,
OBJECT graphical_obj)

VOdyUpdate updates dycontrol_obj for graphical_obj. This function affects the attributes and points of the graphical
object by looping through each dynamic action and reading the data from the data object to create a new attribute
structure or set of points or both. This function also saves the original points and attributes so the application can use
VOdyReset to restore the object to the state it was in before any dynamic change was made. If VOdyReset is not
called, the original attributes are not used after they are saved. The original points, however, are used with each
update since dynamic changes transform the original points to create a new set of points. If dynamics are turned off,
any change resulting from a call to VOdyUpdate is ignored and the object remains unchanged.

Examples
The following code fragment, adapted from dynamics.c, creates a dynamic control object and attaches data objects
to it.

/* Create a dynamic control object. */
dyn_control = VOdyCreate ();

/* Attach the two data objects to the dynamic control object. */
VOdyAttachData (dyn_control, V_DYN_ROTATE, rotation_vd, &low_range, &high_range,

center_point, (OBJECT)NULL);
VOdyAttachData (dyn_control, FOREGROUND_COLOR, color_tt, (float *) NULL, (float *)

NULL, (OBJECT) NULL, (OBJECT) NULL);

/* Attach the dynamic control object to the dial object. */
VOobDySet (dial, dyn_control);

/* Draw the dial and update the display as the data changes. */
TdpDraw (drawport);
for (n = 0; n < 2000; n++)
{

dial_input = sin ((double) (n / 15.0)) - cos ((double) (n / 25.0));
TdpDrawNext (drawport);

VOed (VOedge)
VOed Functions VO Routines

Manages edge objects. Edge objects, together with node objects, are used to construct abstract graphs. Graphs are
data structures that represent relationships between data. Edges and nodes let you show hierarchical relationships
between data. Node objects represent data and edge objects provide the connections between nodes. Some example
ways of using this kind of graph are finding the shortest routes between objects, project planning, and electrical
circuit analysis. Edge and node objects are provided as application modelling tools for the DataViews environment.
For a description of graphs, see any computer science textbook on data structures.

Each edge object is specified by up to two node objects connected by the edge object. The edge direction is defined
by the order that the nodes are given to VOedCreate. An edge object can have an optional geometry object that
graphically represents the edge object. The geometry object must be a graphical object or a deque of graphical
objects. If a geometry object is used, it is drawn when the edge object is drawn.

An edge object can have an arbitrary number of slots attached to it that contain user-defined data. Use the VOslotkey
routines to create and initialize a slot, then use the VOobSlotUtil routines to attach the slot to the edge object.

See Also
VOnode module

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voed Functions
VOedAtGet See VOobAtGet.
VOedAtSet See VOobAtSet.
VOedBox See VOobBox.
VOedClearMark Clears the mark bits of all edge objects.
VOedClearVisit Clears the visit counts of all edge objects.
VOedClone See VOobClone.
VOedCreate Creates an edge object.
VOedDereference See VOobDereference.
VOedGetGeometry Gets the geometry object of the edge object.
VOedGetMark Gets the mark bit of the edge object.
VOedGetNode Gets a node of the edge object.
VOedGetVisit Gets the visit count of the edge object.
VOedIntersect See VOobIntersect.
VOedPtGet See VOobPtGet.
VOedPtSet See VOobPtSet.
VOedRefCount See VOobRefCount.
VOedReference See VOobReference.
VOedSetGeometry Sets the geometry object of the edge object.
VOedSetMark Sets the mark bit of the edge object.
VOedSetNode Sets a node of the edge object.
VOedSetVisit Sets the visit count of the edge object.
VOedStatistic Returns statistics about edge objects.
VOedTraverse See VOobTraverse.
VOedValid See VOobValid.
VOedXfBox See VOobXfBox.
VOedXformBox See VOobXformBox.
A VOed routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOed routine to save the overhead of an additional routine call.

VOedClearMark

VOed Functions VO Routines

Clears the mark bits of all edge objects.

void
VOedClearMark (void)

VOedClearMark clears the mark bit of all edge objects.

VOedClearVisit

VOed Functions VO Routines

Clears the visit counts of all edge objects.

void
VOedClearVisit (void)

VOedClearVisit clears the visit counts of all edge objects.

VOedCreate

VOed Functions VO Routines

Creates an edge object.

OBJECT
VOedCreate (

OBJECT Node1,
OBJECT Node2,
OBJECT Geometry,
ATTRIBUTES *attributes)

VOedCreate creates and returns an edge object. If the values of Node1 and Node2 are not NULL, they are added to
the edge object in order. VOedTraverse visits Node1 first then Node2. If the value of the Geometry object is not
NULL, it can be one of the following: ar, ci, dg, dq, el, in, ln, pt, py, re, sd, tx, vt.

VOedGetGeometry

VOed Functions VO Routines

Gets the geometry object of the edge object.

OBJECT
VOedGetGeometry (

OBJECT edge)

VOedGetGeometry returns the geometry object of the edge object.

VOedGetMark

VOed Functions VO Routines

Gets the mark bit of the edge object.

BOOLPARAM
VOedGetMark (

OBJECT edge)

VOedGetMark returns the mark bit of the edge object.

VOedGetNode

VOed Functions VO Routines

Gets a node of the edge object.

OBJECT
VOedGetNode (

OBJECT edge,
int index)

VOedGetNode returns a node at the index-th position of the edge object. If index is zero, returns the number of nodes
attached to the edge object, which is always 2. Returns NULL if passed an invalid index.

VOedGetVisit

VOed Functions VO Routines

Gets the visit count of the edge object.

LONG
VOedGetVisit (

OBJECT edge)

VOedGetVisit returns the visit count of the edge object.

VOedSetGeometry

VOed Functions VO Routines

Sets the geometry object of the edge object.

OBJECT
VOedSetGeometry (

OBJECT edge,
OBJECT NewGeometry)

VOedSetGeometry sets the geometry of edge to NewGeometry. For a list of valid geometry objects, see VOedCreate.
Returns the value of the old geometry object.

VOedSetMark

VOed Functions VO Routines

Sets the mark bit of the edge object.

BOOLPARAM
VOedSetMark (

OBJECT edge,
BOOLPARAM NewMark)

VOedSetMark sets the mark bit of the edge object to NewMark. Returns the old value of the mark bit.

VOedSetNode

VOed Functions VO Routines

Sets a node of the edge object.

OBJECT
VOedSetNode (

OBJECT edge,
int index,
OBJECT NewNode)

VOedSetNode sets a node at the index-th position in edge to NewNode. The value of index can be 1, or 2. Returns the
old value of the node. Returns NULL if passed an invalid index.

VOedSetVisit

VOed Functions VO Routines

Sets the visit count of the edge object.

LONG
VOedSetVisit (

OBJECT edge,
LONG NewCount)

VOedSetVisit sets the visit count of the edge object to NewCount. Returns the old value of the visit count.

VOedStatistic

VOed Functions VO Routines

Returns statistics.

LONG
VOedStatistic (

int Flag)

VOedStatistic returns statistics. Valid flag values are defined in VOstd.h. If the flag is OBJECT_COUNT, returns the
current number of edges.

VOel (VOellipse)
VOel Functions VO Routines

Manages ellipse objects (el). An ellipse is defined by three point subobjects that define the major and minor axis of
the ellipse. In DataViews an ellipse object is a generalized implementation of an ellipse where the major axis and
minor axes do not have to be perpendicular. Ellipse attributes are foreground color, background color, line type, line
width, and fill status.

The ellipse fill status can be FILL, EDGE, EDGE_WITH_FILL, FILL_WITH_EDGE, or DV_TRANSPARENT. When
EDGE is used, the boundary is drawn using the line attributes. An ellipse using DV_TRANSPARENT fill looks
identical to one with EDGE only, but you can select it with the cursor anywhere in the interior of the shape. A
transparent ellipse does not visually obscure objects behind it, but they cannot be selected through it. When either
EDGE_WITH_FILL or FILL_WITH_EDGE is used, the second feature listed in the fill status flag uses the
background color attribute. The foreground color is used in all other cases.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voel Functions
VOelAtGet See VOobAtGet.
VOelAtSet See VOobAtSet.
VOelBox See VOobBox.
VOelClone See VOobClone.
VOelCreate Creates an ellipse object.
VOelDereference See VOobDereference.
VOelIntersect See VOobIntersect.
VOelPtGet See VOobPtGet.
VOelPtSet See VOobPtSet.
VOelRefCount See VOobRefCount.
VOelReference See VOobReference.
VOelStatistic Returns statistics about ellipses.
VOelTraverse See VOobTraverse.
VOelValid See VOobValid.
VOelXfBox See VOobXfBox.
VOelXformBox See VOobXformBox.
A VOel routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOel routine to save the overhead of an additional routine call.

VOelCreate

VOel Functions VO Routines

Creates an ellipse object.

OBJECT
VOelCreate (

OBJECT pt1,
OBJECT pt2,
OBJECT pt3,
ATTRIBUTES *attributes)

VOelCreate creates and returns an ellipse object. The points p1, p2, and p3 define the major and minor axis with p2
as the center. Valid attributes field flags are:

FOREGROUND_COLOR FILL_STATUS
BACKGROUND_COLOR LINE_TYPE

LINE_WIDTH

VOelStatistic

VOel Functions VO Routines

Returns statistics about ellipses.

LONG
VOelStatistic (

int Flag)

VOelStatistic returns statistics about ellipses, depending on the value of the flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, VOarStatistic returns the current number of ellipses.

VOg (VOgraphics)
VOg Functions VO Routines

Draws graphical objects on the screen using lower level routines. This module can be thought of as a layer that sits
on top of the GR routines and augments them by allowing clipping to overlapping drawports. The conceptual model
for the system resembles that of the GR routines, except that all graphical output is clipped to a specified boundary.
These routines expect screen coordinates, which are device-dependent. To make a routine device-independent, you
can use GRvcs_to_scs to convert virtual coordinates to screen coordinates.

These routines can be used to improve drawing speed; they are not recommended for typical DV-Tools applications.

All routines that use the invp and outvps parameters interpret them as defined below.

invp The clipping viewport. invp is a pointer to a RECTANGLE structure that specifies a viewport in
screen coordinates. The graphical object (circle, line, etc.) is clipped to this viewport. This
parameter must be specified.

outvps The obscuring viewports. outvp is a pointer to a NULL-terminated array of RECTANGLE structures
specifying viewports in screen coordinates that obscure the graphical object. If NULL, clipping to
obscuring viewports is not required.

The RECTANGLE structures used for invp and outvps must contain the lower left and upper right points. If the
RECTANGLE structures contain upper left and lower right points, the routines will not work correctly. To sort
coordinates in a RECTANGLE, call VOuVpSort. This routine switches the coordinates if required to ensure that the
lower left point is actually below and to the left of the upper right point.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vog Functions
VOgArc Draws a filled or unfilled arc.
VOgChSize Sets the character size.
VOgCircle Draws a filled or unfilled circle.
VOgCubic Draws a cubic curve.
VOgDot Draws a dot.
VOgFrame Draws an unfilled rectangle.
VOgGenericDraw Draws an object of unknown geometry.
VOgIsVisible Determines if any part of the object’s viewport is

visible.
VOgLine Draws a line.
VOgMultiline Draws an array of connected lines.
VOgPolygon Draws a filled polygon.
VOgRaster Draws a raster image.
VOgRect Draws a filled rectangle.
VOgReErase Erases a rectangular area of the screen.
VOgText Draws text.
VOgTextsize Gets the size of a text string.
VOgvText Draws vector text string.
VOgvTextsize Calculates vector text bounding box.

VOgArc

VOg Functions VO Routines

Draws a filled or unfilled arc.

void
VOgArc (

DV_POINT *center,
int radius,
int start,
int delta,
int filled,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgArc draws a filled or unfilled arc. start is the starting angle of the arc in degrees. delta is the angle in degrees
subtended by the arc. filled is a flag indicating whether the arc is filled (YES) or not (NO). The invp and outvps
parameters are defined above.

VOgChSize

VOg Functions VO Routines

Sets the character size.

int
VOgChSize (

int newsize)

VOgChSize sets the size of text to be drawn to newsize, and returns the old text size. If newsize is 0 (zero), returns
the current size of the text, but does not set the size of the text to be drawn.

VOgCircle

VOg Functions VO Routines

Draws a filled or unfilled circle.

void
VOgCircle (

DV_POINT *center,
int radius,
int filled,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgCircle draws a filled or unfilled circle. filled is a flag indicating whether the circle is filled (YES) or not (NO).
The invp and outvps parameters are defined above.

VOgCubic

VOg Functions VO Routines

Draws a cubic curve.

void
VOgCubic (

DV_POINT *pts,
int pattern,
int width,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgCubic draws a cubic curve. pts is a pointer to four coefficient pairs for the parametric equations of the curve.
The curve is defined as:

x(t) = SUM(i from 0 to 3)
a[i].x *t ^ (3-i)

y(t) = SUM(i from 0 to 3)
a[i].y *t ^ (3-i)

where ^ means “raised to the power of.” pattern is the index of the line pattern. width is the width of the line in
pixels. The invp and outvps parameters are defined above.

VOgDot

VOg Functions VO Routines

Draws a dot.

void
VOgDot (

DV_POINT *p,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgDot draws a single pixel. The invp and outvps parameters are defined above.

VOgFrame

VOg Functions VO Routines

Draws an unfilled rectangle.

void
VOgFrame (

DV_POINT *p1,
DV_POINT *p2,
int pattern,
int width,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgFrame draws an unfilled rectangle. p1 and p2 are the diagonally opposite corner points of the rectangle. pattern
is the index of the line pattern used to draw the rectangle border. width is the width of the rectangle outline in pixels.
The invp and outvps parameters are defined above.

VOgGenericDraw

VOg Functions VO Routines

Draws an object of unknown geometry.

void
VOgGenericDraw (

VOGDRAWFUNPTR drawfunction,
ADDRESS drawargs,
RECTANGLE *objvp,
RECTANGLE *invp,
RECTANGLE **outvps)

void
drawfunction(

ADDRESS drawargs)

VOgGenericDraw draws an object of arbitrary geometry using a user-defined drawing function, drawfunction.
Clipping is provided even if the drawing function does not have clipping capabilities. drawargs is a pointer to
arguments for use by the drawing function. objvp is the smallest viewport that contains the object. The RECTANGLE
structure used for objvp must contain the actual upper right and lower left points. invp is the viewport that contains
the graphical object. If invp is NULL, the object is drawn completely within objvp. outvps is the NULL-terminated
list of pointers to obscuring viewports. If outvps is NULL, no viewports obscure invp. For a code fragment, see the
examples at the end of this section.

VOgIsVisible

VOg Functions VO Routines

Determines if any part of the object’s viewport is visible.

BOOLPARAM
VOgIsVisible (

RECTANGLE *objvp,
RECTANGLE *invp,
RECTANGLE **outvps,
DV_BOOL *all_in,
DV_BOOL *covered)

VOgIsVisible determines if any part of the object viewport, objvp, is visible. The RECTANGLE structure used for
objvp must contain the actual upper right and lower left points. The object viewport is visible if part of it is in the
clipping viewport, invp, and part is uncovered by the obscuring viewport list, outvps. Further information is
available in the parameters all_in and covered. YES is passed back in the parameter all_in if the object viewport is
entirely within the clipping viewport. YES is passed back in the parameter covered if any part of the object viewport
intersected by the clipping viewport is partially covered by a rectangle in the obscuring viewport list. VOgIsVisible
returns YES if any part of the object viewport, objvp, is visible. Otherwise returns NO.

VOgLine

VOg Functions VO Routines

Draws a line.

void
VOgLine (

DV_POINT *p1,
DV_POINT *p2,
int pattern,
int width,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgLine draws a line. p1 and p2 are the start and end points of the line. pattern is the index of the line type; width is
the width of the line in pixels. The invp and outvps parameters are defined above.

VOgMultiline

VOg Functions VO Routines

Draws an array of connected lines.

void
VOgMultiline (

DV_POINT *pts,
int numpts,
int pattern,
int width,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgMultiline draws a series of connected lines. pts is an array of DV_POINT structures containing the points to
connect by the multiple line. numpts gives the number of points in the array. pattern is the index of the line type.
width is the width of the line in pixels. The invp and outvps parameters are defined above.

VOgPolygon

VOg Functions VO Routines

Draws a filled polygon.

void
VOgPolygon (

DV_POINT *pts,
int numpts,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgPolygon draws a filled polygon. The last point is automatically connected back to the first point. The invp and
outvps parameters are defined above. To draw an unfilled polygon, use VOgFrame.

VOgRaster

VOg Functions VO Routines

Draws a raster image.

void
VOgRaster (

ADDRESS raster,
DV_POINT *ll,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgRaster draws a raster image. ll indicates where to draw the origin (lower left corner) of the raster. The invp and
outvps parameters are defined above.

VOgRect

VOg Functions VO Routines

Draws a filled rectangle.

void
VOgRect (

DV_POINT *p1,
DV_POINT *p2,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgRect draws a filled rectangle. p1 and p2 are opposite corners of the rectangle. The invp and outvps parameters
are defined above. To draw an unfilled rectangle, use VOgFrame.

VOgReErase

VOg Functions VO Routines

Erases a rectangular area of the screen.

void
VOgReErase (

DV_POINT *p1,
DV_POINT *p2,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgReErase erases a rectangular area of the screen. This is done by drawing a filled rectangle in the current
background color. p1 and p2 are opposite corners of the rectangle. The invp and outvps parameters are defined
above.

VOgText

VOg Functions VO Routines

Draws text.

void
VOgText (

char *string,
DV_POINT *spt,
int direction,
int position,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgText draws a text string, string. The string can contain embedded carriage returns. The location of the string on
the screen is specified by the anchor point parameter, spt, in screen coordinates. direction controls the direction of
the text on the screen. Valid values are HORIZONTAL_TEXT or VERTICAL_TEXT. position defines how the text is
justified with respect to the anchor point position. There are nine possible positions and they can be defined by
bitwise ORing together one flag from each of these two groups:

AT_TOP_EDGE AT_LEFT_EDGE
CENTERED CENTERED
AT_BOTTOM_EDGE AT_RIGHT_EDGE

The invp and outvps parameters are defined above.

VOgTextsize

VOg Functions VO Routines

Gets the size of a text string.

void
VOgTextsize (

char *string,
int text_direction,
int *width,
int *height)

VOgTextsize calculates the size, in screen coordinates (pixels), of a text string with embedded carriage returns.

VOgvText

VOg Functions VO Routines

Draws a vector text string.

void
VOgvText (

char *string,
DV_POINT *p,
int direction,
int position,
RECTANGLE *invp,
RECTANGLE **outvps)

VOgvText draws a text block to the current viewport using a vector font. The text block is passed as a string with
embedded carriage returns for line breaks. The parameters are:

string the text block to be drawn.
p the anchor or reference point.
directionindicates whether the text is to be drawn from left-to-right (HORIZONTAL_TEXT) or top-to-bottom

(VERTICAL_TEXT).
position defines how the text is justified with respect to the anchor point, p. There are nine possible positions

which can be defined by bitwise ORing together one flag from each of these two groups:
AT_TOP_EDGE AT_LEFT_EDGE
CENTERED CENTERED
AT_BOTTOM_EDGE AT_RIGHT_EDGE

These flag values are defined in VOstd.h. The invp and outvps parameters are defined at the beginning of this
section.

VOgvTextsize

VOg Functions VO Routines

Calculates vector text bounding box.

void
VOgvTextsize (

char *string,
DV_POINT *p,
int direction,
int position,
RECTANGLE *bound)

VOgvTextsize calculates the size in screen coordinates of the bounding box of a multiple-line text, passed as string
with embedded carriage returns. For rotated text, this is the tightest enclosing rectangle. The parameters are:

string the text block to be drawn.
p the anchor or reference point.
directionindicates whether the text is to be drawn from left-to-right (HORIZONTAL_TEXT) or top-to-bottom

(VERTICAL_TEXT).
position defines how the text is justified with respect to the anchor point, p. There are nine possible positions

which can be defined by bitwise ORing together one flag from each of these two groups:
AT_TOP_EDGE AT_LEFT_EDGE
CENTERED CENTERED
AT_BOTTOM_EDGE AT_RIGHT_EDGE

bound returns the vector text boundary.

These flag values are defined in VOstd.h.

Examples
The following code shows an example draw function for VOgGenericDraw. Arguments are passed to this routine
using the static local variables below.

typedef struct
{
DV_POINT *start;
DV_POINT *end;
int pattern;
int width;
} LINE_ARGS;

LOCAL void drawline (argsa)
ADDRESS argsa;

{
LINE_ARGS *args = (LINE_ARGS *)argsa;
GRmv_and_line (args->start, args->end, args->pattern, args->width);

}
The following code fragment sets the argument block and calls VOgGenericDraw with the local drawing function
defined above. linebox is the smallest viewport containing the object. invp is the viewport in which the object is to
be displayed. outvps is a NULL-terminated list of obscuring viewports.

RECTANGLE linebox;
LINE_ARGS args;

/* Get the viewport containing the line. */
if (p1->x < p2->x)

{ linebox.ll.x = p1->x; linebox.ur.x = p2->x; }
else

{ linebox.ll.x = p2->x; linebox.ur.x = p1->x; }

if (p1->y < p2->y)
{ linebox.ll.y = p1->y; linebox.ur.y = p2->y; }

else
{ linebox.ll.y = p2->y; linebox.ur.y = p1->y; }

args.start = p1;
args.end = p2;
args.pattern = pattern;
args.width = width;
VOgGenericDraw (drawline, (ADDRESS) &args, &linebox, invp, outvps);

VOic (VOicon)
VOic Functions VO Routines

Manages icon objects (ic). An icon object displays the bit-mapped graphic information contained in a pixmap (pm).

The size of an icon object depends on the screen resolution, since it is based on the number of pixels in the pixmap.
Icons do not automatically resize when a view is zoomed. However, their height and width can be explicitly set to
any size.

Icons can have a writemask and color transform for masking. When an icon is drawn, the only pixels drawn are
those whose corresponding pixels in the mask are greater than 0. The color transform changes how the writemask is
interpreted. The writemask and color transform let you make icons with “transparent” portions that are pixel-based,
color-based, or both.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voic Functions
VOicAtGet See VOobAtGet.
VOicAtSet See VOobAtSet.
VOicBox See VOobBox.
VOicClone See VOobClone.
VOicCreate Creates an icon from a pixmap.
VOicDereference See VOobDereference.
VOicGet Gets information about an icon.
VOicIntersect See VOobIntersect.
VOicPtGet See VOobPtGet.
VOicPtSet See VOobPtSet.
VOicRefCount See VOobRefCount.
VOicReference See VOobReference.
VOicSet Sets characteristics for an icon.
VOicStatistic Returns statistics about icons.
VOicTraverse See VOobTraverse.
VOicValid See VOobValid.
VOicXfBox See VOobXfBox.
VOicXformBox See VOobXformBox.
A VOic routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOic routine to save the overhead of an additional routine call.

VOicCreate

VOic Functions VO Routines

Creates an icon from a pixmap.

OBJECT
VOicCreate (

OBJECT pixmap,
OBJECT anchor_pt,
ATTRIBUTES *attributes,

V_IC_ATTR_ENUM flag, <type> value,
V_IC_ATTR_ENUM flag, <type> value,
...,

V_IC_ATTR_ARGEND)

VOicCreate creates an icon from pixmap. The anchor point, anchor_pt, is the point object in the drawing where the
icon is attached. Valid attributes field flags are:

FOREGROUND_COLOR BACKGROUND_COLOR
TEXT_POSITION

The TEXT_POSITION attribute determines the position of the icon with respect to the anchor point. For example, if
TEXT_POSITION is CENTERED, the anchor point is at the center of the icon. If attributes is NULL, default values
are used.

Mask, color mapping, and size characteristics are specified using a variable length argument list of flag/value pairs.
The type of characteristic to be set is specified using a variable length argument list of flag/value pairs. flag specifies
the characteristic to be set. value specifies the new value for the characteristic. The list must terminate with
V_PM_ATTR_ARGEND. Valid flag/value pairs are listed in VOicGet. To set the value rather than get it, remove one
pointer from the value type listed. For example, to set the mask pixmap, declare the value as OBJECT instead of
OBJECT *. Use the parameter pixmap, not the V_IC_PIXMAP flag, to set the pixmap.

If you do not specify a color transform for the pixmap using the V_IC_PIXMAP_XFORM flag, and the
DVMATCH_COLORS variable in your configuration file is set to YES, DataViews creates a color transform that
makes the best match from the pixmap colors to the screen’s color table. If DVMATCH_COLORS is set to NO, no
color transform is used and the icon is drawn in the colors of the screen’s color table that have the same index as the
colors in the pixmap’s color table. For more information on DVMATCH_COLORS, refer to the Setting the
DataViews Environment appendix of the DV-Draw User’s Guide. Returns the icon if successful. Otherwise returns
NULL.

VOicGet

VOic Functions VO Routines

Gets information about an icon.

void
VOicGet (

OBJECT icon,
V_IC_ATTR_ENUM flag, <type> *valuep,
V_IC_ATTR_ENUM flag, <type> *valuep,
...,

V_IC_ATTR_ARGEND)

VOicGet gets information about icon. The type of information to be returned is specified using a variable length
argument list of flag/value pairs. flag specifies the kind of information to be passed. valuep specifies the location to
write the information. The list must terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs are:

Flags Value Type Description
V_IC_PIXMAP OBJECT * Pixmap that the

icon is based on.
V_IC_MASK_PIXMAP OBJECT * Pixmap used as

the writemask.
V_IC_HEIGHT int * Height of the icon

in screen
coordinates.

V_IC_WIDTH int * Width of the icon
in screen
coordinates.

V_IC_PIXMAP_XFORM COLOR_XFORM
**

Mapping of the
pixmap’s color
indices to the
screen’s color
indices.

V_IC_MASK_PIXMAP_XFOR
M

COLOR_XFORM
**

Color transform
used to interpret
the writemask.

V_IC_RASTER ADDRESS * Raster drawn on
the screen. Can
be manipulated
using GR
routines (get
only).

VOicSet

VOic Functions VO Routines

Sets characteristics for an icon.

void
VOicSet (

OBJECT icon,
V_IC_ATTR_ENUM flag, <type> value,
V_IC_ATTR_ENUM flag, <type> value,
...,

V_IC_ATTR_ARGEND)

VOicSet sets characteristics for icon. The type of characteristic to be set is specified using a variable length argument
list of flag/value pairs. flag specifies the characteristic to be set. value specifies the new characteristic value. The list
must terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs are listed in VOicGet. To set the value rather
than get it, remove one pointer from the value type listed. For example, to set the pixmap, declare the value as
OBJECT instead of OBJECT *.

If you change the pixmap using the V_IC_PIXMAP flag, but do not specify a new color transform using the
V_IC_PIXMAP_XFORM flag, and DVMATCH_COLORS is set to YES, DataViews creates a new “best match” color
transform. Otherwise it uses the old color transform, if any, and the colors in the icon may look arbitrary.

VOicStatistic

VOic Functions VO Routines

Returns statistics about icons.

LONG
VOicStatistic (

int flag)

VOicStatistic returns statistics about icons, depending on the value of flag. Valid flag values are defined in VOstd.h.
If flag is OBJECT_COUNT, returns the current number of icons.

VOim (VOimage)
VOim Functions VO Routines

Manages image objects (im). An image object displays the bit-mapped graphic information contained in a pixmap
(pm).

The size of an image object depends on the positions of its control points. Images automatically resize when a view
is zoomed. Pixels are automatically added or deleted as required to fill the area defined by the control points.

Images can have a writemask and color transform for masking. When an image is drawn, only the pixels whose
corresponding pixels in the mask are greater than 0 are drawn. The color transform changes how the writemask is
interpreted. The writemask and color transform let you make images with “transparent” portions that are pixel-
based, color-based, or both.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voim Functions
VOimAtGet See VOobAtGet.
VOimAtSet See VOobAtSet.
VOimBox See VOobBox.
VOimClone See VOobClone.
VOimCreate Creates an image from a pixmap.
VOimDereference See VOobDereference.
VOimGet Gets information about an image.
VOimIntersect See VOobIntersect.
VOimPtGet See VOobPtGet.
VOimPtSet See VOobPtSet.
VOimRefCount See VOobRefCount.
VOimReference See VOobReference.
VOimScalePixma

p
Displays an image at an exact scale factor relative

to the pixmap size.
VOimSet Sets characteristics for an image.
VOimStatistic Returns statistics about images.
VOimTraverse See VOobTraverse.
VOimValid See VOobValid.
VOimXfBox See VOobXfBox.
VOimXformBox See VOobXformBox.
A VOim routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOim routine to save the overhead of an additional routine call.

VOimCreate

VOim Functions VO Routines

Creates an image from a pixmap.

OBJECT
VOimCreate (

OBJECT pixmap,
OBJECT p1,
OBJECT p2,
ATTRIBUTES *attributes,

V_IM_ATTR_ENUM flag, <type> value,
V_IM_ATTR_ENUM flag, <type> value,
...,

V_IM_ATTR_ARGEND)

VOimCreate creates an image from pixmap. The image is bounded by the anchor points, p1 and p2. Valid attributes
field flags are:

FOREGROUND_COLOR BACKGROUND_COLOR
TEXT_POSITION

If attributes is NULL, default values are used. Mask and color mapping characteristics are specified using a variable
length argument list of flag/value pairs. The type of characteristic to be set is specified using a variable length
argument list of flag/value pairs. flag specifies the characteristic to be set. value specifies the new value for the
characteristic. The list must terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs are listed in VOimGet. To
set the value rather than get it, remove one pointer from the value type listed. For example, to set the mask pixmap,
declare the value as OBJECT instead of OBJECT *. Use the parameter pixmap, not the V_IC_PIXMAP flag, to set
the pixmap.

If you do not specify a color transform for the pixmap using the V_IM_PIXMAP_XFORM flag, and the
DVMATCH_COLORS variable in your configuration file is set to YES, DataViews creates a color transform that
makes the best match from the pixmap colors to the screen’s color table. If DVMATCH_COLORS is set to NO, no
color transform is used and the image is drawn in the colors of the screen’s color table that have the same index as
the colors in the pixmap’s color table. For more information on DVMATCH_COLORS, refer to the Setting the
DataViews Environment appendix of the DV-Draw User’s Guide. Returns the image object if successful. Otherwise
returns NULL.

VOimGet

VOim Functions VO Routines

Gets information about an image.

void
VOimGet (

OBJECT image,
V_IM_ATTR_ENUM flag, <type> *valuep,
V_IM_ATTR_ENUM flag, <type> *valuep,
...,

V_IM_ATTR_ARGEND)

VOimGet gets information about image. The type of information to be returned is specified using a variable length
argument list of flag/value pairs. flag specifies the kind of information to be passed. valuep specifies the location to
write the information. The list must terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs are:

Flags Value Type Description
V_IM_PIXMAP OBJECT * Pixmap that image

is based on.
V_IM_MASK_PIXMAP OBJECT * Pixmap used as the

writemask.
V_IM_PIXMAP_XFORM COLOR_XFORM

**
Mapping of the

pixmap’s color
indices to the
screen’s color
indices.

V_IM_MASK_PIXMAP_XFO
RM

COLOR_XFORM
**

Color transform
used to interpret
the writemask.

V_IM_RASTER ADDRESS * Raster drawn on
the screen. Can
be manipulated
using GR
routines
(get only).

VOimScalePixmap

VOim Functions VO Routines

Displays an image at an exact scale factor relative to the pixmap size.

void
VOimScalePixmap (

OBJECT image,
OBJECT xform,
double xscale,
double yscale)

VOimScalePixmap adjusts the control points of image so that its screen coordinate size is exactly the scale factor,
xscale and yscale, times the size in pixels of the pixmap. For example, if xscale and yscale both equal 1.0, the image
is adjusted so that each pixel in the pixmap is exactly one pixel on the screen. The control points are adjusted only to
the edge of the world coordinate system. If the window is small or the scale factor large, you may not get the
requested scale. The TEXT_POSITION attribute of the image determines the direction of the adjustment. For
example, if TEXT_POSITION is CENTERED, the center of the image remains stationary while both control points
are adjusted. xform specifies the world to screen transform used to determine the coordinates of the points.

VOimSet

VOim Functions VO Routines

Sets characteristics for an image.

void
VOimSet (

OBJECT image,
V_IM_ATTR_ENUM flag, <type> value,
V_IM_ATTR_ENUM flag, <type> value,
...,

V_IM_ATTR_ARGEND)

VOimSet sets characteristics for image. The type of characteristic to be set is specified using a variable length
argument list of flag/value pairs. flag specifies the characteristic to be set. value specifies the new value for the
characteristic. The list must terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs listed in VOimGet. To set
the value rather than get it, remove one pointer from the value type listed. For example, to set the pixmap, declare
the value as OBJECT instead of OBJECT *.

If you change the pixmap using the V_IM_PIXMAP flag, but do not specify a new color transform using the
V_IM_PIXMAP_XFORM flag, and DVMATCH_COLORS is set to YES, DataViews creates a new “best match” color
transform. Otherwise it uses the old color transform, if any, so the colors in the image may look arbitrary.

VOimStatistic

VOim Functions VO Routines

Returns statistics about images.

LONG
VOimStatistic (

int flag)

VOimStatistic returns statistics about images, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of images.

VOin (VOinput)
VOin Functions VO Routines

Manages input objects (in). Input objects are graphical objects used to get data interactively from the user and
modify the associated variable descriptors accordingly. Input objects are the functional counterpart to data groups or
graph objects, which can be thought of as output objects. An input object contains an input technique object and a
list of variable descriptors (vdp). The input technique object maintains the details of how the input object interacts
with the user, and the list of variable descriptors (vdp) stores the data resulting from the interaction. Input objects
can be multiply referenced, but they cannot be multiply displayed. Input objects work closely with the event handler.

Input objects use only the foreground and background color attributes. Unlike most graphical objects, input objects
cannot inherit foreground and background color attributes. Therefore, setting those attributes to NULL means that
they will get set to some default values, namely, white foreground on a black background.

Applications using the VOin routines must #include the header file dvinteract.h. See also the VOit routines, the VUer
routines, and the Interaction Handlers chapter for more information about input objects.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voin Functions
VOinAtGet See VOobAtGet.
VOinAtSet See VOobAtSet.
VOinBox See VOobBox.
VOinClone See VOobClone.
VOinCreate Creates and returns an input object.
VOinDereference See VOobDereference.
VOinGetFlag Returns the current value of a flag.
VOinGetInternal Retrieves an input object’s internal components.
VOinGetVarList Gets the variable descriptor list of an input object.
VOinIntersect See VOobIntersect.
VOinIsDrawn Determines if the input object is currently drawn.
VOinPtGet See VOobPtGet.
VOinPtSet See VOobPtSet.
VOinPutFlag Sets a flag in the input object.
VOinPutVarList Sets the variable descriptor list of the input object.
VOinRefCount See VOobRefCount.
VOinReference See VOobReference.
VOinReset Restores an input object to its initial state.
VOinState Queries or sets the input object activation state.
VOinStatistic Returns statistics about input objects.
VOinTechnique Gets and sets the input technique of the input

object.
VOinTraverse See VOobTraverse.
VOinValid See VOobValid.
VOinXfBox See VOobXfBox.
VOinXformBox See VOobXformBox.
A VOin routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOin routine to save the overhead of an additional routine call.

VOinCreate

VOin Functions VO Routines

Creates and returns an input object.

OBJECT
VOinCreate (

OBJECT p1,
OBJECT p2,
ATTRIBUTES *attributes)

VOinCreate creates and returns an input object. pt1 and pt2 are control points that define opposite corners of the
input object. Valid attributes field flags are:

FOREGROUND_COLOR BACKGROUND_COLOR

If attributes is NULL, default values are used.

VOinGetFlag

VOin Functions VO Routines

Returns the current value of a flag.

int
VOinGetFlag (

OBJECT Input,
int FlagName)

VOinGetFlag returns the current value of the flag, FlagName, from the input object. Valid values for this flag are
listed under VOinPutFlag below.

VOinGetInternal

VOin Functions VO Routines

Retrieves an input object’s internal components.

ADDRESS
VOinGetInternal (

OBJECT Input,
int InternalObj)

VOinGetInternal returns a pointer to an input object’s internal components. The input object must be drawn. This
routine is intended for use by sophisticated users. The following flags are valid values for InternalObj:

TRANSFORM Transformation object used by all input objects to map from the layout to the screen.
ECHO_VIEWPORT Screen coordinates of the primary echo area (in the form of a RECTANGLE) for the

input object, such as the slider area for VNslider and the text echo area for VNtext.
AREA_DEQUE Deque of pickable menu area objects used by VNmenu and VNmultiplexor to highlight

menu items; or a deque of embedded object areas for VNcombiner.
OBJECT_TRANS Transform object used by VNcombiner and VNmultiplexor to draw embedded input

objects.
INOBJS_DEQUE Deque of input objects embedded in VNcombiner and VNmultiplexor.
OBJECT_DEQUE Deque of object choices used in VNmenu, VNmultiplexor, and VNtoggle; or a deque of

pickable objects for VNchecklist.
ITEM_DEQUE Deque of menu text objects used by VNmenu and VNmultiplexor for text menus.
INITIAL_VALUE A pointer to the original value of the variable descriptor used by VNmenu, VNtoggle,

VNslider, VNpalette, and VNmultiplexor. For example, this flag allows updating the
initial value to reflect a new value supplied by the user. This new value would then be
used in the case of a CANCEL or RESTORE event.

INITIAL_XVALUE A pointer to the original value of the x variable descriptor used by VNslider2D.
INITIAL_YVALUE A pointer to the original value of the y variable descriptor used by VNslider2D.

VOinGetVarList

VOin Functions VO Routines

Gets the variable descriptor list of an input object.

void
VOinGetVarList (

OBJECT Input,
ADDRESS **VarList,
int *NumVars)

VOinGetVarList gets the variable descriptor list. VarList is the address of a pointer to a variable descriptor array. This
is an internal data structure and should not be modified.

VOinIsDrawn

VOin Functions VO Routines

Determines if the input object is currently drawn.

BOOLPARAM
VOinIsDrawn (

OBJECT Input)

VOinIsDrawn queries the input object to determine whether it is currently drawn, or if it has been successfully
drawn by TdpDrawObject. Returns YES if the input object is drawn. Otherwise returns NO.

VOinPutFlag

VOin Functions VO Routines

Sets a flag in the input object.

void
VOinPutFlag (

OBJECT Input,
int FlagName,
int FlagValue)

VOinPutFlag sets the current value of the flag, FlagName, to the value specified in FlagValue for the input object.
These flags are used to control certain aspects of how the input object is drawn and erased. Possible values for these
flags are:

FlagName FlagValue Action
DRAW_LAYOUT_BOU

ND
YES/NO Draws layout

viewport boundary.
DRAW_ECHO_BOUND YES/NO Draws echo viewport

boundary.
SAVE_RASTER YES/NO Saves raster of

overwritten
background.

REDRAW_ON_UPDATE YES/NO Redraws any
obscuring objects
damaged by the
input object update.

ERASE_METHOD RESTORE_RASTE
R

Restores background
from saved raster.

CALL_REDRAW Redraws background
by calling
VOscRedraw.

ERASE_RECTANGLE Draws a rectangle in
the background
color.

NO_ERASE Does not erase input
object image.

This routine queries the device to determine if it supports raster operations. If they are supported, the default erase
method is RESTORE_RASTER; otherwise the default is CALL_REDRAW. The defaults of the
REDRAW_ON_UPDATE flag is NO; the defaults of the other flags are YES.

Setting the REDRAW_ON_UPDATE flag to YES prevents input objects from “bleeding through” other objects, but
can slow your application’s performance. For best results, set this flag to YES only for input objects that may be
obscured by other objects in the drawports. To set this flag to YES for all input objects in a view, use the
SetInputFlag utility. This flag cannot be set in DV-Draw.

VOinPutVarList

VOin Functions VO Routines

Sets the variable descriptor list of the input object.

void
VOinPutVarList (

OBJECT Input,
ADDRESS *VarList,
int NumVars)

VOinPutVarList sets the variable descriptor. VarList is the address of a variable descriptor list. NumVars is the
number of variable descriptors assigned to the input object.

VOinReset

VOin Functions VO Routines

Restores an input object to its initial state.

void
VOinReset (

OBJECT Input)

VOinReset restores the input object to its initial state after it has been drawn. This routine should be called if the
input object has been erased in some unusual way. For example, when the input object has been drawn and then the
screen is erased by calling TscErase. If VOinReset is not called at this point, the input object continues to be active
even though it is not visible. Redrawing the input object implicitly resets it.

VOinState

VOin Functions VO Routines

Queries or sets the input object activation state.

int
VOinState (

OBJECT Input,
int State)

VOinState queries or sets the input object activation state. Input objects are ACTIVE or INACTIVE. Returns the state
of the input object at entry. If State is not NULL, the input object is changed to the new activation state. If the input
object is drawn, its associated events are activated or deactivated, depending on the setting of State.

VOinStatistic

VOin Functions VO Routines

Returns statistics about input objects.

LONG
VOinStatistic (

int flag)

VOinStatistic returns statistics about input objects, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of input objects.

VOinTechnique

VOin Functions VO Routines

Gets and sets the input technique of the input object.

OBJECT
VOinTechnique (

OBJECT Input,
OBJECT Technique)

VOinTechnique associates the input technique object with the input object. Sets the input object’s input technique
object to technique and returns the old value. If the technique parameter has the value DONT_SET_THE_VALUE,
the current input technique object is returned without change.

VOit (VOintech)
VOit Functions VO Routines

Manages input technique objects (it). Input technique objects are non-graphical objects that represent methods of
acquiring data from users for use by input objects (in). Although input technique objects have reference counts and
can be multiply referenced, they can only be attached to one input object at a time.

An input technique object contains an interaction handler (ih), which defines a specific method of interaction, and a
template drawing object, which defines the physical layout of the user interaction on the screen. An interaction
technique object also contains a list of pickable items and their associated values. The list is used for interaction
handlers such as VNmenu, which can have pickable items. An interaction technique objects can also contain
information about key-action bindings and a pointer to an echo function which is called every time the input object
is drawn, erased, selected, or accepts input.

Applications using these routines must #include the header file dvinteract.h. Interaction handlers are DV-Tools
global variables and must be globally referenced using GLOBALREF. For more information on specific interaction
handlers and their template drawings, see the Interaction Handlers chapter. For more information about input
objects, see the VOinput section.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voit Functions
VOitClone See VOobClone.
VOitCreate Creates and returns an input technique object.
VOitDereference See VOobDereference.
VOitGetEchoFunction Gets the Echo Function from the input

technique.
VOitGetInteraction Returns the input technique’s interaction

handler.
VOitGetKeys Returns bindings from keys to actions.
VOitGetList Gets the list of pickable items.
VOitGetListValues Gets the list of values for pickable items.
VOitGetTemplate Returns the template drawing.
VOitGetTemplateNam

e
Gets the filename associated with the template.

VOitKeyOrigin Sets the origin of the keys.
VOitListStart Gets and sets the starting index for list.
VOitPutEchoFunction Sets the Echo Function for the input technique.
VOitPutInteraction Sets the interaction handler.
VOitPutKeys Sets bindings from keys to actions.
VOitPutList Sets the list of pickable items.
VOitPutListValues Sets the list of values for pickable items.
VOitPutTemplate Sets the template.
VOitPutTemplateNam

e
Sets the filename associated with the template.

VOitRefCount See VOobRefCount.
VOitReference See VOobReference.
VOitStatistic Returns statistics about input techniques.
VOitTraverse See VOobTraverse. The only subobject for it

objects is the template drawing.
VOitValid See VOobValid.
A VOit routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOit routine to save the overhead of an additional routine call.

VOitCreate

VOit Functions VO Routines

Creates and returns an input technique object.

OBJECT
VOitCreate (

INHANDLER ih,
OBJECT template)

VOitCreate creates an input technique object. ih specifies the interaction handler to be associated with the input
technique object. Interaction handlers are DV-Tools global variables and must be globally referenced in the
application program using the GLOBALREF or external declaration. They are directly analogous to display
formatters and their names begin with the VN prefix. template specifies a drawing object template that provides the
format layout and other graphical parameters of the input technique object. For some interaction handlers, if the
template is NULL, a default layout is used. For more information, see the Interaction Handlers chapter.

VOitGetEchoFunction

VOit Functions VO Routines

Gets the Echo Function from the input technique.

VOITECHOFUNPTR
VOitGetEchoFunction (

OBJECT InputTechnique,
ADDRESS *Args,
int *Argbytes)

VOitGetEchoFunction returns a pointer to the echo function belonging to InputTechnique.

VOitGetInteraction

VOit Functions VO Routines

Returns the interaction handler belonging to InputTechnique.

INHANDLER
VOitGetInteraction (

OBJECT InputTechnique)

VOitGetKeys

VOit Functions VO Routines

Returns bindings from keys to actions.

char *
VOitGetKeys (

OBJECT InputTechnique,
int ActionType)

VOitGetKeys returns a character string representing the key bindings for a specific action type. InputTechnique is the
input technique object supplying the key bindings. ActionType specifies the action type. Valid action type flags are
DONE_KEYS, CANCEL_KEYS, SELECT_KEYS, RESTORE_KEYS, CLEAR_KEYS, or TOGGLE_POLLING_KEYS.
For more information about these flags, see the Interaction Handlers chapter. To assign key-action bindings to input
technique objects, use the VOitPutKeys routine.

VOitGetList

VOit Functions VO Routines

Gets the list of pickable items.

void
VOitGetList (

OBJECT InputTechnique,
int *ListType,
ADDRESS *list,
int *NumItems)

VOitGetList gets the input technique object’s list of pickable items. The type of list is returned in the ListType flag.
These values have the following meanings:

TEXT_LIST The list contains a pointer to an array of text string pointers.
OBJECT_LIST The list contains a pointer to an array of object ids.
NO_LIST No pickable items list exists for the input technique object.

NumItems specifies the number of items in the list. list contains a pointer to an internal buffer and should be
modified with care. See also VOitPutList.

VOitGetListValues

VOit Functions VO Routines

Gets the list of values for pickable items.

void
VOitGetListValues (

OBJECT InputTechnique,
float **values,
int *NumValues)

VOitGetListValues gets the list of values for pickable items. This sets a pointer to an array of float numbers, which
are associated with the pickable items. If this array exists and an item is picked, the input variable is set to the float
value associated with the item. If the array is NULL and an item is picked, the input variable is set to the 1-based
index of the item. The number of values should equal the number of pickable items. Note that values contains a
pointer to an internal array buffer of floats and should be modified with care. See also VOitPutListValues.

VOitGetTemplate

VOit Functions VO Routines

Returns the template drawing.

OBJECT
VOitGetTemplate (

OBJECT InputTechnique)

VOitGetTemplate returns the template drawing object belonging to InputTechnique.

VOitGetTemplateName

VOit Functions VO Routines

Gets the filename associated with the template.

char *
VOitGetTemplateName (

OBJECT InputTechnique)

VOitGetTemplateName returns the filename of the template belonging to InputTechnique.

VOitKeyOrigin

VOit Functions VO Routines

Sets the origin of the keys.

int
VOitKeyOrigin (

OBJECT InputTechnique,
int ActionType,
int Origin)

VOitKeyOrigin defines which set of key-action bindings is to be bound to the specified input technique,
InputTechnique, when its associated input object is drawn. ActionType specifies which key-action binding is being
referenced (DONE_KEYS, CANCEL_KEYS, SELECT_KEYS, RESTORE_KEYS, CLEAR_KEYS, or
TOGGLE_POLLING_KEYS), and Origin specifies whether to use the local (LOCAL_KEYS) or global
(GLOBAL_KEYS) bindings for that particular action type. Local key-action bindings are set for each individual input
technique using the VOitPutKeys routine; global bindings are set for all input objects using the VUerPutKeys
routine. If the key origin is set to LOCAL_KEYS but no local keys are defined, the global keys are used.
VOitKeyOrigin returns the previous key-action origin. If Origin is set to DONT_SET_THE_VALUE, the current key
origin is returned and left unchanged.

VOitListStart

VOit Functions VO Routines

Gets and sets the starting index for list.

int
VOitListStart (

OBJECT InputTechnique,
int StartIndex)

VOitListStart defines the beginning of a text menu list that allows scrolling for efficient display update. The routine
gets and sets the starting index for the input technique object’s list of pickable items. The list start index is 1-based,
meaning the first item has an index of 1, and indicates which pickable item goes in the first slot of a menu. This
allows paging for menus that don’t have enough room for all of the pickable items. This routine always returns the
old value. If the new value is invalid, e.g. zero or DONT_SET_THE_VALUE, the routine returns the value with no
change.

VOitPutEchoFunction

VOit Functions VO Routines

Sets the Echo Function for the input technique.

void
VOitPutEchoFunction (

OBJECT InputTechnique,
VOITECHOFUNPTR echo_fcn,
ADDRESS Args,
int Argbytes)

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

VOitPutEchoFunction sets the echo function, echo_fcn, for the input technique. The echo function is a user-supplied
routine that is called by the interaction handler after one of its internal interaction routines has been called. The echo
function is called with the current values of the variables, the address of its variable descriptors, the echo viewport, a
programmer-supplied argument structure, and the size of the structure in bytes. Args and Argbytes define the
contents and size of this structure to be passed to the echo function. The form of the echo function varies slightly for
each type of interaction handler. For the exact syntax of the echo function for a specific interaction handler, see the
Interaction Handlers chapter. The following echo function for VNtext shows a slight variation in the parameters:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
char **Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Input is the invoking input object. Origin specifies the action that originated the call to the echo function
(INITIAL_DRAW, TAKE_INPUT, UPDATE_DRAW, CONTEXT_REDRAW, ERASE) or the sub-actions
(SETUP_FOR_DRAW, CONTEXT_DRAW, CLEANUP_DATA, DATA_RESET). State indicates which type of return
value action caused the call to the interaction routine (INPUT_ACCEPT, INPUT_DONE, INPUT_CANCEL,
INPUT_USED, INPUT_UNUSED). Value and Vdp provide the variable descriptor of the input object and its current
value. EchoVP is a screen coordinate viewport rectangle indicating where the echo area is placed on the screen. args
is a pointer to the programmer-specified argument structure.

The echo function receives valid parameters when called from all origins except ERASE. When the origin is ERASE,
the parameters Vdp and Value may be NULL or invalid. To ensure that your echo function does not process invalid
parameters, check either the Origin or the validity of Vdp and Value within the echo function.

VOitPutInteraction

VOit Functions VO Routines

Sets the interaction handler.

INHANDLER
VOitPutInteraction (

OBJECT InputTechnique,
INHANDLER Format)

VOitPutInteraction replaces the interaction handler belonging to the input technique object with Format. Returns
ADDRESS of the old interaction handler.

VOitPutKeys

VOit Functions VO Routines

Sets bindings from keys to actions.

void
VOitPutKeys (

OBJECT InputTechnique,
int ActionType,
char *Keys)

VOitPutKeys defines a set of local key-action bindings for the input technique object given by InputTechnique.
ActionType specifies the desired action type. Valid action type flags are: DONE_KEYS, CANCEL_KEYS,
SELECT_KEYS, RESTORE_KEYS, CLEAR_KEYS, or TOGGLE_POLLING_KEYS. For additional information, see
VUerPutKeys. Keys should be a character string containing the characters for all the keys to be bound to that action.
Note that VUerPutKeys defines a global set of key-action bindings. These global bindings are used when any of the
following conditions apply:

No key-action bindings have been given to the particular input technique object using VOitPutKeys.
The key origin has not been set to LOCAL_KEYS using VOitKeyOrigin.
The key origin has been set to GLOBAL_KEYS using VOitKeyOrigin.

VOitPutList

VOit Functions VO Routines

Sets the list of pickable items.

void
VOitPutList (

OBJECT InputTechnique,
int ListType,
ADDRESS list,
int NumItems)

VOitPutList sets the input technique object’s list of pickable items. The type of list is specified by ListType. If this
has the value TEXT_LIST, list should be an array of text string pointers; if it has the value OBJECT_LIST, list should
be an array of graphical object ids. NumItems specifies the number of items in the list. This list is not used by all
interaction handlers. To determine whether a specific interaction handler uses a pickable list, see the description of
the particular interaction handler in the Interaction Handlers chapter.

VOitPutListValues

VOit Functions VO Routines

Sets the list of values for pickable items.

void
VOitPutListValues (

OBJECT InputTechnique,
float *values,
int NumValues)

VOitPutListValues sets the list of values for pickable items. This sets a pointer to an array of float numbers, which
are associated with the pickable items. If this array exists and an item is picked, the input variable is set to the float
value associated with the item. If the array is NULL and an item is picked, the input variable is set to the 1-based
index of the item. The number of values should equal the number of pickable items. If values is NULL, NumValues
should be 0. This list is not used by all interaction handlers. To see if it is used by a specific interaction handler, see
the description in the Interaction Handlers chapter.

VOitPutTemplate

VOit Functions VO Routines

Sets the template.

OBJECT
VOitPutTemplate (

OBJECT InputTechnique,
OBJECT Template)

VOitPutTemplate replaces the template drawing object belonging to InputTechnique with Template. Returns the old
template.

VOitPutTemplateName

VOit Functions VO Routines

Sets the filename associated with the template.

void
VOitPutTemplateName (

OBJECT InputTechnique,
char *FileName)

VOitPutTemplateName sets the filename associated with the template belonging to InputTechnique. Should be called
in addition to VOitPutTemplate for the correct filename to appear in DV-Draw.

VOitStatistic

VOit Functions VO Routines

Returns statistics about input techniques.

LONG
VOitStatistic (

int flag)

VOitStatistic returns statistics about input technique objects, depending on the value of flag. Valid flag values are
defined in VOstd.h. If flag is OBJECT_COUNT, returns the current number of input technique objects.

VOln (VOline)
VOln Functions VO Routines

Manages line objects (ln). A line object is defined by two point subobjects which specify its end points. A line object
uses foreground color, line width, and line type attributes.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voln Functions
VOlnAtGet See VOobAtGet.
VOlnAtSet See VOobAtSet.
VOlnBox See VOobBox.
VOlnClone See VOobClone.
VOlnCreate Creates and returns a line object.
VOlnDereference See VOobDereference.
VOlnIntersect See VOobIntersect.
VOlnPtGet See VOobPtGet.
VOlnPtSet See VOobPtSet.
VOlnRefCount See VOobRefCount.
VOlnReference See VOobReference.
VOlnStatistic Returns statistics about line objects.
VOlnTraverse See VOobTraverse.
VOlnValid See VOobValid.
VOlnXfBox See VOobXfBox.
VOlnXformBox See VOobXformBox.
A VOln routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOln routine to save the overhead of an additional routine call.

VOlnCreate

VOln Functions VO Routines

Creates and returns a line object.

OBJECT
VOlnCreate (

OBJECT pt1,
OBJECT pt2,
ATTRIBUTES *attributes)

VOlnCreate creates and returns a line object. The two point subobjects, pt1 and pt2, define the end-points of the line
object. Valid attributes field flags are:

FOREGROUND_COLOR LINE_WIDTH
LINE_TYPE

If attributes is NULL, default values are used.

VOlnStatistic

VOln Functions VO Routines

Returns statistics about line objects.

LONG
VOlnStatistic (

int flag)

VOlnStatistic returns statistics about lines, depending on the value of flag. Valid flag values are defined in VOstd.h.
If flag is OBJECT_COUNT, returns the current number of line objects.

VOlo (VOlocation)
VOlo Functions VO Routines

Manages location objects (lo), which contain information about the last locator or window event. Typically, the
location object is obtained by calling a polling routine: TloPoll for simple polling and VOscWinEventPoll or
VOloWinEventPoll for using window extensions. These two types of polling return location objects that are not
equivalent. The location objects contain different information and are compatible with different routines. Simple
polling returns a location object with key press, position, and screen origination information, and NULL values for
the WINEVENT structure. The location object returned by window event polling routines contains all the
information listed above and the additional information contained in the WINEVENT structure, such as keyboard
state and event type. For the WINEVENT typedef, see the Include Files chapter. The following table shows which
routines support each type of polling.

Window Event Polling: Simple Polling: Both:
VOscWinEventPoll or

VOloWinEventPoll
TloPoll or VOscPoll TloGetSelectedDrawport

TloGetSelectedObject
TloWinEventSetup TloSetup TloGetSelectedObjectName
VOloButton VOscClosePoll VOloCreate
VOloKeyString VOscLocate VOloKey
VOloKeySym VOscLoSet VOloScpGet
VOloMaxPoint VOscOpenPoll VOloScreen
VOloRegion VOscUnlocate VOloStatistic
VOloState VOloValid
VOloType VOloWcpGet
VOloWinEventGet VOloDereference
VOscWinEventMask VOloRefCount
VUerWinEventPost VOloReference

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Volo Functions
VOloButton Returns the button that was pressed.
VOloCreate Creates and returns a location object.
VOloDereference See VOobDereference.
VOloKey Returns the key that was pressed.
VOloKeyString Returns the keystring value of the location object.
VOloKeySym Returns the key symbol value of the location

object.
VOloMaxPoint Returns a point representing the maximum point on

the screen.
VOloRefCount See VOobRefCount.
VOloReference See VOobReference.
VOloRegion Returns a rectangle representing the exposed region

on the screen.
VOloScpGet Returns location in screen coordinates.
VOloScreen Gets the location object’s screen object.
VOloState Returns an unsigned long representing the state of

the buttons and modifier keys.
VOloStatistic Returns statistics about location objects.

VOloType Returns the type of event.
VOloValid See VOobValid.
VOloWcpGet Returns the location object in drawing’s world

coordinates.
VOloWinEventGet Returns the window event structure of the location

object.
VOloWinEventPoll Polls for the next window event.
A VOlo routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOlo routine to save the overhead of an additional routine call.

VOloButton

VOlo Functions VO Routines

Returns the button that was pressed.

int
VOloButton (

OBJECT location)

VOloButton returns an integer indicating which mouse button was pressed, starting with the left button as number 1.
This routine must be preceded by a call to a WINEVENT polling routine.

VOloCreate

VOlo Functions VO Routines

Creates and returns a location object.

OBJECT
VOloCreate (void)

VOloCreate creates and returns a location object. This routine can be used to create a location object without calling
a polling routine.

VOloKey

VOlo Functions VO Routines

Returns the key that was pressed.

int
VOloKey (

OBJECT location)

VOloKey returns the ASCII code of the key that was pressed. Mouse buttons are returned as 1, 2, and 3 for the left,
middle, and right buttons respectively.

VOloKeyString

VOlo Functions VO Routines

Returns the keystring value of the location object.

char *
VOloKeyString (

OBJECT location)

VOloKeyString returns the keystring value of the location object. The keystring is a character string associated with
the particular key symbol. Normally, its length is 1 and it is the ASCII character associated with the particular key
symbol. Function and other keys can be rebound to arbitrary strings of any length. Returns a pointer to an internal
character string which should not be modified. This routine must be preceded by a call to a WINEVENT polling
routine.

VOloKeySym

VOlo Functions VO Routines

Returns the key symbol value of the location object.

ULONG
VOloKeySym (

OBJECT location)

VOloKeySym returns the key symbol (keysym) value of the location object. The key symbol is an integer
representing the symbol on the key that was pressed, taking into account the effect of modifier keys such as Shift
and Control. For key symbols that are ASCII characters, and for ASCII meta characters, the key symbol has the
same value as the ASCII code. For other keys, such as function keys and modifier keys, the key symbol has a value
larger than 255. The key symbol values are identical to the key symbol values in X11. Constants representing these
values are defined in the #include files GRkeysym.h and GRkeysymdef.h, which are adapted from the standard Xlib
#include files. VOloKeySym requires a prior call to a WINEVENT polling routine.

VOloMaxPoint

VOlo Functions VO Routines

Returns a point representing the maximum point on the screen.

DV_POINT *
VOloMaxPoint (

OBJECT location)

VOloMaxPoint returns the maximum point on the screen, which is the point with the largest possible x and y
coordinates. Returns a pointer to internal point structure which should not be modified. This routine must be
preceded by a call to a WINEVENT polling routine.

VOloRegion

VOlo Functions VO Routines

Returns a rectangle representing the exposed region on the screen.

RECTANGLE *
VOloRegion (

OBJECT location)

VOloRegion returns a pointer to a rectangle representing the exposed region on the screen. The pointer points to an
internal rectangle structure which should not be modified. When the event exposes several regions, the union of
these regions is returned. To access an array of the individual regions, call VOloWinEventGet to get the WINEVENT
structure. The rectlist field of the WINEVENT structure contains a pointer to an array of the exposed rectangular
regions, but is currently only implemented for X. The rectangle has a value of (0,0, 0,0) for events other than type
V_EXPOSE. This routine must be preceded by a call to a WINEVENT polling routine.

VOloScpGet

VOlo Functions VO Routines

Returns location in screen coordinates.

DV_POINT *
VOloScpGet (

OBJECT location)

VOloScpGet returns the locator position in screen coordinates. The routine returns a pointer to an internal point
structure which should not be modified.

VOloScreen

VOlo Functions VO Routines

Returns the location object’s screen object.

OBJECT
VOloScreen (

OBJECT location)

VOloState

VOlo Functions VO Routines

Returns an unsigned long representing the state of the buttons and modifier keys.

ULONG
VOloState (

OBJECT location)

VOloState returns an unsigned long representing the state of buttons and modifier keys prior to the reported event.
Each button or modifier key is represented by a bit in the returned value. If the bit is set to 1, the corresponding key
or button has been pressed. The bit mask for each button and modifier is specified in constants defined in dvGR.h.
The state can be interpreted using the following list of modifier keys and mouse buttons state flags, which are ORed
together to reflect the combination of modifier keys and mouse buttons. This routine must be preceded by a call to a
WINEVENT polling routine.

V_STATE_SHIFT A shift key is down.
V_STATE_LOCK The caps lock key has been pressed.
V_STATE_CONTROL The control key is down.
V_STATE_MOD1 The meta key is down.
V_STATE_MOD2,

V_STATE_MOD3,
V_STATE_MOD4,
V_STATE_MOD5

Additional meta keys are down. If your
device has additional meta keys, they
can be mapped to these flags.

V_STATE_BUTTON1 Left mouse button is down.
V_STATE_BUTTON2 Middle mouse button is down.
V_STATE_BUTTON3 Right mouse button is down.
V_STATE_BUTTON4,

V_STATE_BUTTON
5

Additional mouse buttons are down. If
your device has additional mouse
buttons, they can be mapped to these
flags.

VOloStatistic

VOlo Functions VO Routines

Returns statistics about location objects.

LONG
VOloStatistic (

int flag)

VOloStatistic returns statistics about location objects, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of location objects.

VOloType

VOlo Functions VO Routines

Returns the type of event.

ULONG
VOloType (

OBJECT location)

VOloType returns the type of event. These types are identical to the event types specified in VOscWinEventMask and
are represented by a set of constants defined in dvGR.h. This routine must be preceded by a call to a WINEVENT
polling routine. These are the valid flags that can be returned:

V_KEYPRESS A key was pressed. Keys include modifier keys (<Shift>, <Control>, etc.) and
function keys. Extract the key information from the location object using
VOloKey, VOloKeyString, or VOloKeySym.

V_KEYRELEASE A key was released. Keys include modifier keys (<Shift>, <Control>, etc.) and
function keys. Extract the key information from the location object using
VOloKey, VOloKeyString, or VOloKeySym.

V_BUTTONPRESS A mouse button was pressed. Extract the mouse button information from the
location object using VOloButton.

V_BUTTONRELEASE A mouse button was released. Extract the mouse button information from the
location object using VOloButton.

V_MOTIONNOTIFY Any motion of the mouse, with or without the mouse buttons down. Extract the
position information from the location object using VOloScpGet or
VOloWcpGet.

V_ENTERNOTIFY The mouse has entered the window.
V_LEAVENOTIFY The mouse has left the window.
V_WINDOW_ICONIFY The user iconifies the window.
V_EXPOSE Some portion of the window has been exposed and may need to be redrawn.

Extract the region information from the location object using VOloRegion.
V_RESIZE The window size has changed. Extract size information from the location

object using VOloMaxPoint.
V_WINDOW_QUIT The user requested a window quit.

V_NON_STANDARD_EVENT An event specified in altmask occurred. Extract the event data structure from
the location object using VOloWinEventGet. The event data structure is in the
eventdata field.

V_NON_DV_WINDOW_EVENT An event occurred in a window not explicitly opened as a screen, such
as a widget. Extract the event data structure from the location object using
VOloWinEventGet. The event data structure is in the eventdata field.

VOloWcpGet

VOlo Functions VO Routines

Returns the location object in drawing’s world coordinates.

DV_POINT *
VOloWcpGet (

OBJECT location)

VOloWcpGet returns the locator position in a drawing’s world coordinates. This routine returns a pointer to an
internal point structure which should not be modified. If the locator is not within a drawport, returns NULL.

VOloWinEventGet

VOlo Functions VO Routines

Returns the window event structure of the location object.

WINEVENT *
VOloWinEventGet (

OBJECT location)

VOloWinEventGet returns the window event structure of the location object. Returns a pointer to the internal
WINEVENT structure which should not be modified. This routine must be preceded by a call to a WINEVENT
polling routine.

VOloWinEventPoll

VOlo Functions VO Routines

Polls for the next window event.

OBJECT
VOloWinEventPoll (

int mode)

VOloWinEventPoll returns a location object representing the next window event on the event queue. Only event
types passed by the mask, either the default mask or one set by VOscWinEventMask, are returned. If no mask was
set, the default mask passes the following events to the event queue: key press, key release, button press, button
release, motion notify, window quit, enter notify, leave notify, iconify, expose, and resize.

The event queue can contain events from more than one window on systems where windows of the same device type
share a single event queue. When the event queue is shared, the screen to which the location object belongs can be
identified using VOloScreen. When only events from a specific window are desired, use VOscWinEventPoll with the
specific window selected as the current screen.

If the DataViews windows contain widgets or if the application includes non-DataViews windows, the event queue
may contain non-DataViews events. These events are always passed onto the queue, regardless of the event mask.

mode specifies which type of polling mode to use. If the event queue is empty and mode is V_WAIT,
VOloWinEventPoll does not return until an event specified by mask or altmask is generated. If mode is V_NO_WAIT,
VOloWinEventPoll does not wait until an event is generated, but returns NULL instead of the location object.

VOno (VOnode)
VOno Functions VO Routines

Manages node objects. Node objects, together with edge objects, are used to construct abstract graphs. Graphs are
data structures that represent relationships between data. Edges and nodes let you show hierarchical relationships
between data. Node objects represent data and edge objects provide the connections between nodes. Some example
ways of using this kind of graph are finding the shortest routes between objects, project planning, and electrical
circuit analysis. Edge and node objects are provided as application modelling tools for the DataViews environment.
For a description of graphs, see any computer science textbook on data structures.

Each node can have any number of edge objects. A node object can have an optional geometry object that
graphically represents the node. The geometry object must be a graphical object or a deque of graphical objects. The
geometry object is drawn when the node object is drawn.

A node object can have an arbitrary number of slots attached to it that contain user-defined data. Use the VOslotkey
routines to create and initialize a slot, then use the VOobSlotUtil routines to attach the slot to the edge object.

See Also
VOedge module

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vono Functions
VOnoAddEdge Adds an edge to the node object.
VOnoAtGet See VOobAtGet.
VOnoAtSet See VOobAtSet.
VOnoBox See VOobBox.
VOnoClearMark Clears mark bits of all node objects.
VOnoClearVisit Clears visit counts of all node objects.
VOnoClone See VOobClone.
VOnoCreate Creates a node object.
VOnoDelEdge Deletes an edge from the node object.
VOnoDereference See VOobDereference.
VOnoGetEdge Gets an edge of the node object.
VOnoGetGeometry Gets the geometry object of the node object.
VOnoGetMark Gets the mark bit of the node object.
VOnoGetVisit Gets the visit count of the node object.
VOnoIntersect See VoobIntersect.
VOnoPtGet See VOobPtGet.
VOnoPtSet See VOobPtSet.
VOnoRefCount See VOobRefCount.
VOnoReference See VOobReference.
VOnoSetEdge Sets a edge of the node object.
VOnoSetGeometry Sets the geometry object of the node object.
VOnoSetMark Sets the mark bit of the node object.
VOnoSetVisit Sets the visit count of the node object.
VOnoStatistic Returns statistics about nodes.
VOnoTraverse See VOobTraverse.
VOnoValid See VOobValid.
VOnoXfBox See VOobXfBox.
VOnoXformBox See VOobXformBox.
A VOno routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOno routine to save the overhead of an additional routine call.

VOnoAddEdge

VOno Functions VO Routines

Adds an edge to the node object.

OBJECT
VOnoAddEdge (

OBJECT node,
LONG index,
OBJECT edge)

VOnoAddEdge adds an edge object to the node object. The routine adds edge after the index-th edge in node. To add
an edge to the beginning of the node object’s edge list, set index to zero. To add edge to the end of the node object’s
edge list set index equal to the number of edges as shown in the following code fragment:

VOnoAddEdge (node, (LONG)VOnoGetEdge (node, 0), edge);

If there is no index-th edge, the routine does nothing.

VOnoClearMark

VOno Functions VO Routines

Clears mark bits of all node objects.

void
VOnoClearMark (void)

VOnoClearVisit

VOno Functions VO Routines

Clears visit counts of all node objects.

void
VOnoClearVisit (void)

VOnoCreate

VOno Functions VO Routines

Creates a node object.

OBJECT
VOnoCreate (

OBJECT Edge1,
OBJECT Edge2,
OBJECT Geometry,
ATTRIBUTES *attributes)

VOnoCreate creates and returns a node object. The parameters Edge1, Edge2, and Geometry are optional. If Edge1
and Edge2 are specified, a node is created with Edge1 in the first indexed position and Edge2 in the second. Use
VOnoAddEdge to add more edge objects. Use VOnoSetGeometry to change the geometry object.

VOnoDelEdge

VOno Functions VO Routines

Deletes an edge from the node object.

void
VOnoDelEdge (

OBJECT node,
LONG index)

VOnoDelEdge deletes an edge from the node. The routine deletes the edge object at the index-th position in the node
object’s edge list. To delete an edge at the end of the nodes’s edge list, set index equal to the number of edges as
shown in the following code fragment:

VOnoDelEdge (node, (LONG)VOnoGetEdge (node, 0));

If there is no index-th edge the routine does nothing.

VOnoGetEdge

VOno Functions VO Routines

Gets an edge of the node object.

OBJECT
VOnoGetEdge (

OBJECT node,
LONG index)

VOnoGetEdge returns the edge at the index-th position in the node’s edge list. If index is zero, returns the number of
edges that the node object contains.

VOnoGetGeometry

VOno Functions VO Routines

Returns the geometry object of the node object.

OBJECT
VOnoGetGeometry (

OBJECT node)

VOnoGetMark

VOno Functions VO Routines

Returns the mark bit of the node object.

BOOLPARAM
VOnoGetMark (

OBJECT node)

VOnoGetVisit

VOno Functions VO Routines

Returns the visit count of the node object.

LONG
VOnoGetVisit (

OBJECT node)

VOnoSetEdge

VOno Functions VO Routines

Sets a edge of the node object.

OBJECT
VOnoSetEdge (

OBJECT node,
LONG index,
OBJECT NewEdge)

VOnoSetEdge sets a edge at the index-th position of node to NewEdge. Returns the old value of edge.

VOnoSetGeometry

VOno Functions VO Routines

Sets the geometry object of the node object.

OBJECT
VOnoSetGeometry (

OBJECT node,
OBJECT NewGeometry)

VOnoSetGeometry sets the geometry object of the node object to NewGeometry. Returns the old geometry object.

VOnoSetMark

VOno Functions VO Routines

Sets the mark bit of the node object.

BOOLPARAM
VOnoSetMark (

OBJECT node,
BOOLPARAM NewMark)

VOnoSetMark sets the mark bit of node to NewMark. Returns the value of the old mark bit.

VOnoSetVisit

VOno Functions VO Routines

Sets the visit count of the node object.

LONG
VOnoSetVisit (

OBJECT node,
LONG NewCount)

VOnoSetVisit sets the visit count of the node object to NewCount. Returns the old value of the visit count.

VOnoStatistic

VOno Functions VO Routines

Returns statistics about nodes.

LONG
VOnoStatistic (

int Flag)

VOnoStatistic returns statistics about nodes, depending on the value of flag. Valid flag values are defined in VOstd.h.
If the flag is OBJECT_COUNT, VOnoStatistic returns the current number of nodes.

VOpm (VOpixmap)
 VOpm Functions VO Routines

Manages pixmap objects (pm). A pixmap object is a pixel-based object used by image and icon objects. It consists of
a stream of data representing the actual pixel values and information about the height, width, depth, and colors used
by the pixmap. The origin of a pixmap is the lower left corner. Pixel positions are determined in relation to this
origin.

Pixmaps can be created from files or in-memory data. The files must be in a compatible pixel format. The in-
memory data must contain a raster created using GRraster routines or data in GIF, PPM, TIFF, raster, or pixrep
format.

Compatible pixel formats include the GIF format of Compuserve Corporation, the PPM format of Jef Poskanzer, and
the TIFF format of Aldus/Microsoft. The following TIFF classes are supported by DataViews:

TIFF Class Image Type
Class B 1-bit black-and-white images
Class G grayscale images
Class P color images using color tables
Class R color images using RGB values

If your TIFF file does not work with DataViews, you may have an incompatible TIFF file.

Sample pixel files are included with your DataViews release. To use your own pixel files, they must be converted to
one of the compatible formats.

Pixmaps can also be written out to files in GIF, PPM, or TIFF format. You can then convert these files to device-
dependent formats for use with non-DataViews graphic tools.

Pixmaps are either referenced or included. A referenced pixmaps stores the name of the file containing the graphics
information. An included pixmap stores the graphics information directly. Pixmaps created from in-memory data are
always included. Pixmaps created from files are initially referenced, but you can set them to be included.

If a pixmap is referenced, any changes in the pixmap are lost when you reload the view containing the pixmap. To
save changes in a pixmap, set the pixmap to included or write the pixmap out to a file and create a new pixmap that
references that file.

When a pixmap based on a file is created or loaded as part of a view, it is added to a cache of pixmaps. The cache
contains a one-to-one mapping of filenames to pixmaps. If there is already a pixmap in the cache that represents a
file, no other pixmaps based on that file are put in the cache. The cache serves as a library of existing pixmaps to
help you avoid creating duplicates.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vopm Functions
VOpmBestColors Creates a color table that best matches the

pixmaps.
VOpmCacheFind Finds a pixmap in the cache.
VOpmCacheRemove Removes a pixmap from the cache.
VOpmCacheRemove

All
Removes all pixmaps from the cache.

VOpmClip Clips an existing pixmap.
VOpmClone See VOobClone.
VOpmCreate Creates and returns a pixmap.
VOpmDereference See VOobDereference.
VOpmFlip Flips a pixmap.
VOpmGet Gets information about a pixmap.
VOpmGetPixel Gets the color index of a pixel in a pixmap.
VOpmHasDummyPixe

ls
Returns the status of the drawing contained in

the pixmap.
VOpmMerge Merges two pixmaps.
VOpmNewColorTable Maps a pixmap’s colors to a new color table.
VOpmRefCount See VOobRefCount.
VOpmReference See VOobReference.
VOpmResize Resizes a pixmap to a given height and width.
VOpmRotate Rotates a pixmap.
VOpmSet Sets characteristics for a pixmap.
VOpmSetPixel Sets the color index of a pixel in a pixmap.
VOpmSetRasterMask Creates a writemask for a raster using a

pixmap.
VOpmStatistic Returns statistics about pixmaps.
VOpmToRaster Creates a raster from a pixmap.
VOpmValid See VOobValid.
VOpmWrite Writes a pixmap to an external file.
A VOpm routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOpm routine to save the overhead of an additional routine call.

VOpmBestColors

 VOpm Functions VO Routines

Creates a color table that best matches the pixmaps.

BOOLPARAM
VOpmBestColors (

OBJECT *pixmaps,
int new_size,
COLOR_TABLE *clutp)

VOpmBestColors reduces the number of colors used by pixmaps to a set that best represents the original colors.
pixmaps can be either a NULL-terminated array of pixmaps or a pointer to a deque of pixmaps. new_size specifies
the size of the new set and must be between 1 and 256. Returns the reduced set of colors in clutp. Returns
DV_SUCCESS or DV_FAILURE.

VOpmCacheFind

 VOpm Functions VO Routines

Finds a pixmap in the cache.

OBJECT
VOpmCacheFind (

char *file_name)

VOpmCacheFind searches the cache for the pixmap based on file_name. Returns the pixmap if found in the cache.
Otherwise returns 0. If a pixmap based on the file already exists, returns the existing pixmap instead of creating a
duplicate.

VOpmCacheRemove

 VOpm Functions VO Routines

Removes a pixmap from the cache.

void
VOpmCacheRemove (

char *file_name)

VOpmCacheRemove removes the pixmap based on file_name from the cache. Does nothing if there is no such
pixmap in the cache. To replace a pixmap in the cache, you must first call this routine to remove the existing
pixmap. For example, if you change the file that the pixmap references, you can remove the existing pixmap then
call VOpmCreate to create a new pixmap and add it to the cache.

VOpmCacheRemoveAll

 VOpm Functions VO Routines

Removes all pixmaps from the cache.

void
VOpmCacheRemoveAll (void);

VOpmClip

 VOpm Functions VO Routines

Clips an existing pixmap.

OBJECT
VOpmClip (

OBJECT pixmap,
RECTANGLE *rectp)

VOpmClip clips a pixmap to contain only the pixels within the rectangle rectp. The remaining pixels are discarded.
If the rectangle is 10x20, the pixmap size changes to 10x20. Returns the clipped pixmap if successful. Otherwise
returns NULL.

VOpmCreate

 VOpm Functions VO Routines

Creates and returns a pixmap.

OBJECT
VOpmCreate (

char *file_name,
ADDRESS data)

VOpmCreate creates a pixmap from a file or in-memory data variable. Either file_name or data must be valid. If
file_name is valid, the pixmap defaults to referenced, and the graphics contents of the pixmap are not saved when
the pixmap is saved. If data is valid, the pixmap defaults to included, and the graphic contents are saved with the
pixmap. If the pixmap is created from a file, this routine adds the pixmap to the cache unless it duplicates a pixmap
already in the cache. See also VOpmCacheFind. Valid formats for files and data are listed in the introduction to this
module. Returns the pixmap object if successful. Otherwise returns NULL.

VOpmFlip

 VOpm Functions VO Routines

Flips a pixmap.

OBJECT
VOpmFlip (

OBJECT pixmap,
V_PM_FLIP_ENUM direction)

VOpmFlip flips pixmap. If direction is V_PM_HORIZONTAL, flips the pixmap along the horizontal axis; if direction
is V_PM_VERTICAL, flips the pixmap along the vertical axis. Returns the flipped pixmap if successful. Otherwise
returns NULL.

VOpmGet

 VOpm Functions VO Routines

Gets information about a pixmap.

void
VOpmGet (

OBJECT pixmap,
V_PM_ATTR_ENUM flag, <type> *valuep,
V_PM_ATTR_ENUM flag, <type> *valuep,
...,

V_PM_ATTR_ARGEND)

VOpmGet gets information about pixmap. The type of information to be returned is specified using a variable length
argument list of flag/value-pointer pairs. flag specifies the kind of information to be passed. valuep specifies the
location to write the information. The list must terminate with V_PM_ATTR_ARGEND. Valid flag/value-pointer
pairs are:

Flags Value Type Description
V_PM_HEIGHT int * Height in pixels.
V_PM_WIDTH int * Width in pixels.
V_PM_DEPTH int * Color depth.
V_PM_COLOR_TABLE COLOR_TABLE *

*
Colors used by pixmap.

V_PM_FILENAME char ** File that the pixmap is based on.
V_PM_INCLUDE_PIXEL

S
int * TRUE for included pixmaps; FALSE for

referenced pixmaps.
V_PM_VERSION int * Version count incremented whenever the pixmap

is changed.
V_PM_PIXREP_DATA PIXREP * The pixrep used by the pixmap.

VOpmGetPixel

 VOpm Functions VO Routines

Gets the color index of a pixel in a pixmap.

int
VOpmGetPixel (

OBJECT pixmap,
DV_POINT *pointp)

VOpmGetPixel gets the color index of a specified pixel in pixmap. pointp specifies the position of the pixel in the
raster array. Returns the color index of the pixel if successful. Otherwise returns a negative number.

VOpmHasDummyPixels

 VOpm Functions VO Routines

Returns the status of the drawing contained in the pixmap.

BOOLPARAM
VOpmHasDummyPixels (

OBJECT pixmap)

VOpmHasDummyPixels determines whether the external file the pixmap points to was available when it was
created. VOpmHasDummyPixels returns TRUE if the external file was not available. (The user sees a question mark
in place of the actual pixmap.) Returns FALSE if the correct pixmap is being displayed.

VOpmMerge

 VOpm Functions VO Routines

Merges two pixmaps.

OBJECT
VOpmMerge (

OBJECT source,
RECTANGLE *rectp,
OBJECT dest,
DV_POINT *llp,
V_PM_MERGEMODE_ENUM mode,
OBJECT mask,
COLOR_XFORM *mask_transform)

VOpmMerge modifies the destination pixmap, dest, by merging data from the source pixmap, source, into it. rect is
the portion from the source pixmap to merge. llp indicates where to place the lower left corner of the source portion
within the destination pixmap. mode indicates the method for merging the source and destination. Valid flags for
mode are:

V_PM_COPY Replace the destination portion with the source portion.
V_PM_AND Bit-wise AND the destination and source portions.
V_PM_OR Bit-wise OR the destination and source portions.
V_PM_XOR Bit-wise XOR the destination and source portions.

The merged pixmap uses the color table of the destination pixmap; if the destination and source pixmaps have
different color tables, the results may not be what you expect. The AND, OR, and XOR modes combine the color
index of a source pixel with the color index of the corresponding pixel in the destination pixmap. For good results,
you must set up the color table of the destination pixmap, especially for the merge mode. For information on setting
up the color table, see the Plane Masking technical note.

If mask is specified, only the pixels in the destination pixmap whose corresponding pixels in mask have an index
greater than 0 are actually merged with the source portion. All others are unchanged. mask_transform specifies a
color transform that changes the interpretation of mask. When mask is the destination or source pixmap, you can
only use mask_transform to merge certain colors in either the source or destination. If mask_transform is NULL, the
mask is used directly.

Returns the modified pixmap if successful. Otherwise returns NULL.

VOpmNewColorTable

 VOpm Functions VO Routines

Maps a pixmap’s colors to a new color table.

OBJECT
VOpmNewColorTable (

OBJECT pixmap,
COLOR_TABLE *color_table,
BOOLPARAM dither)

VOpmNewColorTable replaces the color table of pixmap with a new color table, color_table. If a color in pixmap
does not have an exact match in the new color table, the closest match is used. If dither is TRUE a Floyd-Steinberg
dither is applied when matching colors. Returns the changed pixmap if successful. Otherwise returns NULL.

VOpmResize

 VOpm Functions VO Routines

Resizes a pixmap to a given height and width.

OBJECT
VOpmResize (

OBJECT pixmap,
int new_height,
int new_width)

VOpmResize resizes pixmap to new_height and new_width. If either new_height or new_width is a negative number,
the corresponding dimension is not changed. Returns the resized pixmap if successful. Otherwise returns NULL.

VOpmRotate

 VOpm Functions VO Routines

Rotates a pixmap.

OBJECT
VOpmRotate (

OBJECT pixmap,
int amount)

VOpmRotate rotates pixmap. amount specifies the number of degrees of rotation. Rotation is clockwise and rounded
down to the nearest multiple of 90 degrees. Returns the rotated pixmap if successful. Otherwise returns NULL.

VOpmSet

 VOpm Functions VO Routines

Sets characteristics for a pixmap.

void
VOpmSet (

OBJECT pixmap,
V_PM_ATTR_ENUM flag, <type> value,
V_PM_ATTR_ENUM flag, <type> value,
...,

V_PM_ATTR_ARGEND)

VOpmSet sets characteristics for pixmap. The type of characteristic to be set is specified using a variable length
argument list of flag/value pairs. flag specifies the characteristic to be set. value specifies the new value for the
characteristic. The list must terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs are:

Flags Value Type Description
V_PM_FILENAME char * File that the pixmap is based on.
V_PM_RAW_DATA ADDRESS Graphics data that the pixmap is based on.
V_PM_INCLUDE_PIXEL

S
int TRUE for included pixmaps; FALSE for referenced pixmaps.

VOpmSetPixel

 VOpm Functions VO Routines

Sets the color index of a pixel in a pixmap.

BOOLPARAM
VOpmSetPixel (

OBJECT pixmap,
DV_POINT *pointp,
int value)

VOpmSetPixel sets the color of a specified pixel in pixmap. pointp specifies the position of the pixel in the raster
array. value is the new color index for the pixel. Returns DV_SUCCESS if successful. Returns DV_FAILURE if the
position is outside the raster array.

VOpmSetRasterMask

 VOpm Functions VO Routines

Creates a writemask for a raster using a pixmap.

ADDRESS
VOpmSetRasterMask (

OBJECT pixmap,
ADDRESS raster,

V_PM_ATTR_ENUM flag, <type> value,
V_PM_ATTR_ENUM flag, <type> value,
...,

V_PM_ATTR_ARGEND)

VOpmSetRasterMask uses pixmap to create a writemask for a raster. The raster can be displayed and manipulated
using GR routines. The flag-value pairs specify how to manipulate the pixel information to make the writemask. The
list of flag-value pairs must terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs are:

Flags Value Type Description
V_PM_BOUNDS RECTANGLE * Use the pixels within this rectangle. Pixels are added or

deleted to match the size of the raster.
V_PM_COLOR_XFORM COLOR_XFORM * Convert the pixel color indices using this color

transform.

Returns the raster with its new write mask if successful. Otherwise returns NULL.

VOpmStatistic

 VOpm Functions VO Routines

Returns statistics about pixmaps.

LONG
VOpmStatistic (

int flag)

VOpmStatistic returns statistics about pixmaps, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of pixmaps.

VOpmToRaster

 VOpm Functions VO Routines

Creates a raster from a pixmap.

ADDRESS
VOpmToRaster (

OBJECT pixmap,
V_PM_ATTR_ENUM flag, <type> value,
V_PM_ATTR_ENUM flag, <type> value,
...,

V_PM_ATTR_ARGEND)

VOpmToRaster creates a raster from pixmap. The raster can be displayed and manipulated using GR routines. The
flag-value pairs specify how to manipulate the pixel information to make the raster. The list of flag-value pairs must
terminate with V_PM_ATTR_ARGEND. Valid flag/value pairs are:

Flags Value Type Description
V_PM_BOUNDS RECTANGLE * Use the pixels within this rectangle.
V_PM_HEIGHT int Add or delete pixels to attain this height.
V_PM_WIDTH int Add or delete pixels to attain this width.
V_PM_COLOR_XFORM COLOR_XFORM * Convert the pixel color indices using this color

transform.

Returns the raster if successful. Otherwise returns NULL.

VOpmWrite

 VOpm Functions VO Routines

Writes a pixmap to an external file.

BOOLPARAM
VOpmWrite (

OBJECT pixmap,
V_PM_FORMAT_ENUM format,
char *file_name)

VOpmWrite writes the pixmap to the specified external file, file_name, in the specified format. Valid formats are:

V_PM_PPM portable pixmap
V_PM_TIFF Tag Interchange File Format

Returns non-NULL if successful. Otherwise returns NULL.

VOpt (VOpoint)
VOpt Functions VO Routines

Manages point objects (pt). Point objects represent physical points in two-dimensional space and are usually used as
control point subobjects for graphical objects. They can be drawn, but unlike other graphical objects, they have no
attributes. Points are always drawn in the drawing foreground color and appear as crosses on the screen.

A point object can be either an absolute point or a relative point. The position of an absolute point object, which is
most commonly used, is expressed directly in world coordinates in the range [-16383,16383]. A relative point object
contains a point subobject, and its position is specified as an offset relative to this subpoint. Relative point object
offsets are expressed either in world coordinates or in screen coordinates, which are device-dependent.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vopt Functions
VOptBox See VOobBox.
VOptClone See VOobClone.
VOptCreate Creates and returns a point object.
VOptDereference See VOobDereference.
VOptFCreate Creates a point object with double precision.
VOptGet Gets point data in the point structure format.
VOptGetFloat Gets point data in FLOAT_POINT format.
VOptGetParams Gets the parameters that define a point.
VOptIntersect See VOobIntersect.
VOptMove Moves a point.
VOptMoveFloat Moves a point by a floating point offset.
VOptRefCount See VOobRefCount.
VOptReference See VOobReference.
VOptStatistic Returns statistics about points.
VOptTraverse See VOobTraverse.
VOptValid See VOobValid.
VOptXfBox See VOobXfBox.
VOptXfGet Gets transformed point in GR point format.
VOptXfGetFloat Gets transformed point in FLOAT_POINT

format.
VOptXformBox See VOobXformBox.
A VOpt routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOpt routine to save the overhead of an additional routine call.

VOptCreate

 VOpt Functions VO Routines

Creates and returns a point object.

OBJECT
VOptCreate (

int format,
int xcoord,
int ycoord,
OBJECT ref_pt)

VOptCreate creates and returns a point object. The point can be an absolute point or a relative point. An absolute
point has the value (xcoord, ycoord) and a NULL value for the ref_pt argument. A relative point has the value
(xcoord + refx, ycoord + refy) where refx and refy are the coordinates of the reference point, and xcoord and ycoord
are the offset coordinates of the point with respect to the reference point. Relative points include the coordinates of
the reference point object in the ref_pt argument. format specifies whether to express the relative point offset in
world or screen coordinates with the value WORLD_COORDINATES or SCREEN_COORDINATES respectively.
Absolute points ignore this flag since they are always specified in world coordinates. Points created in DV-Draw are
absolute points.

VOptFCreate

 VOpt Functions VO Routines

Creates a point object with double precision.

OBJECT
VOptFCreate (

int format,
double xcoord,
double ycoord,
OBJECT ref_pt)

VOptFCreate creates a point with floating point precision. For a description, see VOptCreate above. Note that this
routine lets you represent fractional coordinates using double values for xcoord and ycoord. The coordinates must
still be in the range [-16383,16383]. Returns the point object.

VOptGet

 VOpt Functions VO Routines

Gets point data in the point structure format.

void
VOptGet (

OBJECT point,
DV_POINT *wpt,
DV_POINT *spt_offset)

VOptGet gets the coordinates of the point object. The coordinates are returned in the form of a point structure and
come in two parts: the world coordinates, wpt, and the offset in screen coordinates, spt_offset. An absolute point
object is specified by its world coordinates in wpt with an spt_offset value of zero. A relative point object with an
absolute point object as its reference and offsets in world coordinates is also specified by its world coordinates in
wpt with an spt_offset value of zero. The spt_offset is not zero when a relative point object has an offset in screen
coordinates or inherits an offset from its reference point, another relative point object. When spt_offset is non-zero,
the actual coordinates of the point object are determined by converting the wpt point structure into screen
coordinates, using the TdpWorldToScreen routine, and adding it to the spt_offset point structure. The result can then
be converted back to world coordinates using TdpScreenToWorld. If the point object is a relative point, the returned
coordinates always reflect the current value of its reference point.

VOptGetFloat

 VOpt Functions VO Routines

Gets point data in FLOAT_POINT format.

void
VOptGetFloat (

OBJECT point,
FLOAT_POINT *wpt,
FLOAT_POINT *spt_offset)

VOptGetFloat gets the coordinates of a point object using floating point precision. For a description, see VOptGet
above. Note that this routine returns the coordinates in a FLOAT_POINT structure.

VOptGetParams

 VOpt Functions VO Routines

Gets the parameters that define a point.

void
VOptGetParams (

OBJECT point,
int *is_float,
int *is_world,
double *xcoord,
double *ycoord,
OBJECT *ref_pt)

VOptGetParams gets the parameters that define a point. Gets the type of the point, its x and y coordinates, and its
reference point. If the point is a FLOAT_POINT, sets is_float to YES. Otherwise, sets it to NO. If the point is in
world coordinates, sets is_world to YES. Otherwise, sets it to NO. xcoord and ycoord are set to the x and y
coordinates of the point. ref_pt is set to the reference point if there is one.

VOptMove

 VOpt Functions VO Routines

Moves a point.

void
VOptMove (

OBJECT point,
int flag,
int x,
int y)

VOptMove changes the point object’s coordinates by an integer offset. flag indicates the types of points to be
affected by the move. These values have the following meanings:

DV_ABSOLUTE Move absolute points to a new absolute position, (x,y).
DV_RELATIVE Move absolute points by a relative amount, (x,y).
ADJUST_OFFSET_WORLD Adjust the position of relative points to a new world coordinate offset.
ADJUST_OFFSET_SCREEN Adjust the position of relative points to a new screen coordinate offset.

Note that points created in DV-Draw are absolute points and should be moved using the DV_ABSOLUTE or
DV_RELATIVE flags.

VOptMoveFloat

 VOpt Functions VO Routines

Moves a point by a floating point offset.

void
VOptMoveFloat (

OBJECT point,
int flag,
double deltax,
double deltay)

VOptMoveFloat changes the point object’s coordinates by a floating point offset. For a description of the parameter
flag, see VOptMove above. If the point was not created using VOptFCreate, the fractional part of the offset is
ignored.

VOptStatistic

 VOpt Functions VO Routines

Returns statistics about points.

LONG
VOptStatistic (

int flag)

VOptStatistic returns statistics about point objects, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of point objects.

VOptXfGet

 VOpt Functions VO Routines

Gets transformed point in GR point format.

void
VOptXfGet (

OBJECT point,
OBJECT xform,
DV_POINT *pt)

VOptXfGet gets the coordinates of the point object, point, after applying the transformation, xform, and adding the
screen coordinate offset, if any. The coordinates are returned in the point structure, pt.

VOptXfGetFloat

 VOpt Functions VO Routines

Gets transformed point in FLOAT_POINT format.

void
VOptXfGetFloat (

OBJECT point,
OBJECT xform,
FLOAT_POINT *pt)

VOptXfGetFloat gets transformed point in FLOAT_POINT format. This routine gives a more accurate number than
VOptXfGet.

VOpy (VOpolygon)
VOpy Functions VO Routines

Manages polygon objects (py). A polygon object is defined by two or more point subobjects. Polygon attributes are
foreground color, background color, line type, line width, fill status, and curve type.

The curve type attribute determines how the polygon is drawn. If this has a NULL value, the polygon is drawn with
straight lines between the points. Three other curve types, CLOSED_ENDS, OPEN_ENDS, and FLOATING_ENDS
specify the polygon to be drawn as a B-spline with closed, open, or floating ends respectively.

The polygon fill status can be FILL, EDGE, EDGE_WITH_FILL, FILL_WITH_EDGE, or DV_TRANSPARENT.
When EDGE is used, the boundary is drawn using the line attributes. A polygon using DV_TRANSPARENT fill looks
identical to one with EDGE only, but you can select it with the cursor anywhere in the interior of the shape. A
transparent polygon does not visually obscure objects behind it, but they cannot be selected through it. When either
EDGE_WITH_FILL or FILL_WITH_EDGE is used, the second feature listed in the fill status flag uses the
background color attribute. The foreground color is used in all other cases. Filled polygons are implicitly closed,
which means that the last point does not need to equal the first point.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vopy Functions
VOpyAtGet See VOobAtGet.
VOpyAtSet See VOobAtSet.
VOpyBox See VOobBox.
VOpyClone See VOobClone.
VOpyCreate Creates and returns a polygon object.
VOpyDereference See VOobDereference.
VOpyIntersect See VOobIntersect.
VOpyPtAdd Adds a point to the polygon.
VOpyPtDelete Deletes a point from the polygon.
VOpyPtGet See VOobPtGet.
VOpyPtlistAdd Adds a list of points to the polygon.
VOpyPtlistCreate Creates a polygon object using a list of points.
VOpyPtSet See VOobPtSet.
VOpyRefCount See VOobRefCount.
VOpyReference See VOobReference.
VOpyStatistic Returns statistics about polygons.
VOpyTraverse See VOobTraverse.
VOpyValid See VOobValid.
VOpyXfBox See VOobXfBox.
VOpyXformBox See VOobXformBox.
A VOpy routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOpy routine to save the overhead of an additional routine call.

VOpyCreate

 VOpy Functions VO Routines

Creates and returns a polygon object.

OBJECT
VOpyCreate (

OBJECT pt1,
OBJECT pt2,
ATTRIBUTES *attributes)

VOpyCreate creates and returns a polygon object. pt1 and pt2 are the start and end points respectively. Valid
attributes field flags are:

FOREGROUND_COLOR LINE_WIDTH
BACKGROUND_COLOR LINE_TYPE
FILL_STATUS CURVE_TYPE

If attributes is NULL, default values are used. The default polygon is created using a straight line type. B-spline
curve polygons can be created by setting CURVE_TYPE to CLOSED_ENDS, OPEN_ENDS, or FLOATING_ENDS,
for closed end, open end, and floating end B-splines respectively. To add more points, use the VOpyPtAdd routine.
To create a polygon from a list of points, see VOpyPtlistCreate.

VOpyPtAdd

 VOpy Functions VO Routines

Adds a point to the polygon.

void
VOpyPtAdd (

OBJECT polygon,
int index,
OBJECT point)

VOpyPtAdd adds a point object to a polygon after the index-th point. If index is zero, the point is added to the
beginning. To add a point to the end of the polygon, call the routine as follows:

VOpyPtAdd (polygon, (int)VOpyPtGet (polygon,0), point);

If there is no index-th point, the routine displays an error message. For a description of VOpyPtGet, see the VOob
chapter of this manual.

VOpyPtDelete

 VOpy Functions VO Routines

Deletes a point from the polygon.

void
VOpyPtDelete (

OBJECT polygon,
int index)

VOpyPtDelete deletes a point object from the polygon. To delete a point from the end of the polygon, call the routine
as follows:

VOpyPtDelete (polygon, (int)VOpyPtGet (polygon,0));

If there is no index-th point, the routine displays an error message. This routine does not allow a point count of less
than two.

VOpyPtlistAdd

 VOpy Functions VO Routines

Adds a list of points to the polygon.

void
VOpyPtlistAdd (

OBJECT polygon,
int index,
OBJECT *point,
int numpts)

VOpyPtlistAdd adds a list of points to a polygon after the index-th point. numpts is the number of points in the list.
VOpyPtlistAdd is the same as VOpyPtAdd except that it allows adding more than one point to a polygon.

VOpyPtlistCreate

 VOpy Functions VO Routines

Creates a polygon object using a list of points.

OBJECT
VOpyPtlistCreate (

OBJECT *pt,
int numpts,
ATTRIBUTES *attributes)

VOpyPtlistCreate creates a polygon from a list of points, pt, with number of points in numpts. This is the same as
VOpyCreate except that VOpyPtlistCreate lets you create of a polygon from a list of points. See VOpyCreate for list
of valid attribute field flags. Returns the polygon object.

VOpyStatistic

 VOpy Functions VO Routines

Returns statistics about polygons.

LONG
VOpyStatistic (

int flag)

VOpyStatistic returns statistics about polygons, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of polygons.

VOre (VOrect)
VOre Functions VO Routines

Manages rectangle objects (re). A rectangle is defined by two point subobjects which represent diagonally opposite
corners of the rectangle. Rectangle attributes are foreground color, background color, line type, line width, and fill
status. The rectangle fill status can be FILL, EDGE, EDGE_WITH_FILL, FILL_WITH_EDGE, or
DV_TRANSPARENT. When EDGE is used, the boundary is drawn using the line attributes. A rectangle using
DV_TRANSPARENT fill looks identical to one with EDGE only, but you can select it with the cursor anywhere in
the interior of the shape. A transparent rectangle does not visually obscure objects behind it, but they cannot be
selected through it. When either EDGE_WITH_FILL or FILL_WITH_EDGE is used, the second feature listed in the
fill status flag uses the background color attribute. The foreground color is used in all other cases.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Vore Functions
VOreAtGet See VOobAtGet.
VOreAtSet See VOobAtSet.
VOreBox See VOobBox.
VOreClone See VOobClone.
VOreCreate Creates a rectangle object.
VOreDereference See VOobDereference.
VOreIntersect See VOobIntersect.
VOrePtGet See VOobPtGet.
VOrePtSet See VOobPtSet.
VOreRefCount See VOobRefCount.
VOreReference See VOobReference.
VOreStatistic Returns statistics about rectangle objects.
VOreTraverse See VOobTraverse.
VOreValid See VOobValid.
VOreXfBox See VOobXfBox.
VOreXformBox See VOobXformBox.
A VOre routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOre routine to save the overhead of an additional routine call.

VOreCreate

 VOre Functions VO Routines

Creates a rectangle object.

OBJECT
VOreCreate (

OBJECT pt1,
OBJECT pt2,
ATTRIBUTES *attributes)

VOreCreate creates and returns a rectangle object. pt1 and pt2 are control points that define opposite corners of the
rectangle. Valid attributes field flags are:

FOREGROUND_COLOR FILL_STATUS
BACKGROUND_COLOR LINE_TYPE

LINE_WIDTH

If attributes is NULL, default values are used.

VOreStatistic

 VOre Functions VO Routines

Returns statistics about rectangle objects.

LONG
VOreStatistic (

int flag)

VOreStatistic returns statistics about rectangle objects, depending on the value of flag. Valid flag values are defined
in VOstd.h. If flag is OBJECT_COUNT, returns the current number of rectangle objects.

VOru (VOrule)
 VOru Functions VO Routines

Manages rule objects. A rule object connects a graphical object to a description of an action that depends on a
specified event and condition. For the action to occur, the application must be written to interpret the components of
the rule.

A rule has three components: an event, a condition, and an action. The event specifies what type of event triggers the
rule; the condition specifies the conditions under which the event triggers the action. The file dvrule.h defines the
event, condition, and action constants that you can use to define rules in an application. The dvruletab.h file contains
tables to help interpret conditions and actions.

VOruCreate creates a default rule. Use VOruSetInfo and VOruGetInfo to modify and access rules. VOruAddToOb
associates a rule object with a graphical object. VOruDelFromOb deletes a rule from an object. VOruNumInOb gets
the number of rules in an object. VOruGetFromOb gets a particular rule.

It is recommended to use DV-Draw to create and attach rules to objects in a view. The rules are saved as part of the
view.

#include "dvrule.h"
#include "dvruletab.h"

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

Voru Functions
VOruAddToOb Adds a rule to the object after the insert_index-th

rule.
VOruClone See VOobClone.
VOruCreate Creates a rule object with default values.
VOruDelFromOb Deletes a rule from the object.
VOruDereference See VOobDereference.
VOruGetDqFromOb Returns the rule deque associated with the object.
VOruGetFromOb Returns the index-th rule object of an object.
VOruGetInfo Returns rule object’s event, condition, and action

information.
VOruNumInOb Returns the number of rules in an object.
VOruRefCount See VOobRefCount.
VOruReference See VOobReference.
VOruSetInfo Sets rule object’s event, condition, and action

information.
VOruStatistic Returns statistics about rules.
VOruValid See VOobValid.
A VOru routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOru routine to save the overhead of an additional routine call.

VOruAddToOb

 VOru Functions VO Routines

Adds a rule to the object after the insert_index-th rule.

BOOLPARAM
VOruAddToOb (

OBJECT object,
OBJECT rule,
int insert_index)

VOruAddToOb adds a rule object to the object, object, after the insert_index-th position in the list. The rule object
can be a single rule or a deque of rules. If insert_index is zero, the rule is inserted at the beginning of the rule list. If
the insert_index is -1, the rule is added to the end of the list. Rules are not added if object, rule, or insert_index is
invalid. Returns DV_FAILURE if the rule cannot be added. Otherwise returns DV_SUCCESS.

VOruCreate

 VOru Functions VO Routines

Creates a rule object with default values.

OBJECT
VOruCreate (void)

VOruCreate creates and returns a rule object. The default rule is “On V_RE_PICK If V_RC_ALWAYS Do
V_RA_NOTHING.”

VOruDelFromOb

 VOru Functions VO Routines

Deletes a rule from the object.

BOOLPARAM
VOruDelFromOb (

OBJECT object,
OBJECT rule)

VOruDelFromOb deletes a rule from the object. The rule object can be a single rule or a deque of rules. Returns
DV_FAILURE if the rule cannot be added. Otherwise returns DV_SUCCESS.

VOruGetDqFromOb

 VOru Functions VO Routines

Returns the rule deque associated with the object.

OBJECT
VOruGetDqFromOb (

OBJECT object)

VOruGetDqFromOb returns the rule deque associated with the object. If the object has no rules, returns NULL.

VOruGetFromOb

 VOru Functions VO Routines

Returns the index-th rule object of an object.

OBJECT
VOruGetFromOb (

OBJECT object,
int index)

VOruGetFromOb returns the index-th rule object associated with the object. Rule indices are 1-based. If the index is
0, returns the number of rules associated with the object.

VOruGetInfo

 VOru Functions VO Routines

Returns rule object’s event, condition, and action information.

void
VOruGetInfo (

OBJECT rule,
int flag, int *type_value,
int flag, int *type_value,
...,

V_END_OF_LIST)

VOruGetInfo gets information about rule. You can get information about some or all of the parameters of the rule.
The information is specified using a zero-terminated list of flag-value sets. Each parameter set starts with a rule
component flag that specifies the particular component of the rule to be queried, followed by variable number of
values. The values require the address of a variable in which to return the information. The list must be terminate
with V_END_OF_LIST or zero. Value sets are described below.

If the flag is V_R_EVENT the value set must contain a type value. Valid type values are:

V_RE_PICK V_RE_DONE V_RE_EVENT_USED
V_RE_CANCEL V_RE_DRAW V_RE_UPDATE

If the flag is V_R_CONDITION the value set must contain four values: a type and three arguments. Valid type values
and their corresponding arguments are listed below. Dashes indicate that the information stored in the variable is
unused.

Condition Type Arg1 Arg2 Arg3
V_RC_ALWAYS --- --- ---
V_RC_PICK_BUTTON --- --- mouse button
V_RC_PICK_ASCII --- --- key presses
V_RC_DSV_VALUE dsv operator value
V_RC_DSV_DSV dsv operator dsv
V_RC_OBJ_VAR_VALU

E
--- operator value

If the flag is V_R_ACTION the value set must contain three values: a type and two arguments. Valid type values and
their corresponding arguments are listed below. Dashes indicate that the information stored in the variable is unused.

Action Type Arg1 Arg2
V_RA_NEXT view name ---
V_RA_PREVIOUS --- ---
V_RA_OVERLAY_VIEW view name ---
V_RA_DEL_OVERLAY_VIEW view name ---
V_RA_OVERLAY_OBJ obj name from view name
V_RA_DEL_OBJECT obj name from view name
V_RA_POPUP_AT obj name from view name
V_RA_ERASE_ALL_POPUP_A

T
--- ---

V_RA_REDRAW --- ---
V_RA_QUIT --- ---
V_RA_NOTHING --- ---
V_RA_SYSTEM_CALL call string ---
V_RA_ERASE_ALL_OVERLA

YS
--- ---

V_RA_START_DYNAMICS --- ---

V_RA_STOP_DYNAMICS --- ---
V_RA_INC_UPDATE_RATE --- ---
V_RA_DEC_UPDATE_RATE --- ---
V_RA_SET_DSV dsv value
V_RA_INC_DSV dsv value
V_RA_DEC_DSV dsv value
The following table shows how to interpret the values associated with the rule components. The argument values are
based on the type values described above. All arguments are declared to be RULE_ARG and should be cast as shown
below.

Rule Argument: Cast As: Description:
object or view name (char *) A character string indicating the

object or view name.
condition operator (int) An operator chosen from the

following set: V_RC_EQUAL,
V_RC_NOT_EQUAL,
V_RC_LESS_THAN,
V_RC_LESS_EQUAL_THAN,
V_RC_GREATER_THAN, or
V_RC_GREATER_EQUAL_THAN.

mouse button (int) An integer specifying a mouse
button: 1 = left; 2 = middle;
3 = right.

key press (char *) An ASCII code character string
specifying a key.

data source variable (DSVAR) A data source variable.
variable value (char *) A character string. All values are

saved as character strings so text
variables and numerical variables
can be stored in the same
RULE_ARG. A numerical value
must be converted from ASCII to
its associated data source variable
type.

The following code fragments illustrate how to set, get, and interpret a rule’s condition. These examples use the
right mouse button for the condition.

RULE_ARG arg1, arg2, arg3;
int type, button=3;
OBJECT rule;
/* Setting a rule’s condition */
VOruSetInfo (rule, V_R_CONDITION,

V_RC_PICK_BUTTON,
(RULE_ARG)0, (RULE_ARG)0, (RULE_ARG)button,
V_END_OF_LIST);

/* Getting a rule’s condition */
VOruGetInfo (rule, V_R_CONDITION,

&type, &arg1, &arg2, &arg3,
V_END_OF_LIST);

/* Interpreting the rule’s condition. Note the int cast on arg3. */
if (type == V_RC_PICK_BUTTON && button == (int)arg3)

Do_Action;

VOruNumInOb

 VOru Functions VO Routines

Returns the number of rules associated with an object.

*int
VOruNumInOb (

OBJECT object)

VOruSetInfo

 VOru Functions VO Routines

Sets rule object’s event, condition, and action information.

void
VOruSetInfo (

OBJECT rule,
int flag, int type_value, RULE_ARG arg_value,
int flag, int type_value, RULE_ARG arg_value,
...,

V_END_OF_LIST)

VOruSetInfo sets rule information. You can set information about some or all of the parameters of the rule. The
information is specified using a zero-terminated list of flag-value sets. See VOruGetInfo for valid flag-value sets. If
no flag-value set is passed, the parameters are set to default values. The default parameters are the V_RE_PICK
event, the V_RC_ALWAYS condition, and the V_RA_NOTHING action.

VOruStatistic

 VOru Functions VO Routines

Returns statistics about rules.

LONG
VOruStatistic (

int flag)

VOruStatistic returns statistics about rules, depending on the value of flag. If flag is OBJECT_COUNT, returns the
current number of rules. Valid flag values are defined in VOstd.h.

Examples
The following code fragment illustrates how to process a rule associated with an object. Assume proto_info is a
structure containing application-specific information.

LOCAL void Handle_Rules (proto_info, obj, event)
PROTO_INFO *proto_info;
OBJECT obj;
int event;

{
int i, num_rules, event_type, cond_type, action_type;
RULE_CONDITION cond; /* defined in dvrule.h */
RULE_ACTION action; /* defined in dvrule.h */

num_rules = VOruNumInOb (obj);

/* If the rule event matches the current event, process it */
for (i=1; i <= num_rules; i++)

{
VOruGetInfo (VOruGetFromOb (obj, i),

V_R_EVENT, &event_type,
V_R_CONDITION, &cond_type,

&cond.arg[0], &cond.arg[1], &cond.arg[2],
V_R_ACTION, &action_type,

&action.arg[0], &action.arg[1],
V_END_OF_LIST);

cond.type = (char) cond_type;
action.type = (char) action_type;

if (event==event_type && Cond_Met (proto_info, obj, &cond))
Do_Action (proto_info, &action);

}
}

VOsc (VOscreen)
VOsc Functions VO Routines

Manages screen objects (sc). The screen object is the DV-Tools interface to the display device and contains low-
level information such as the color look-up-table, last locator action, and device name. Only one screen object can
be opened for each device or window in the system. Unlike other objects, the VOsc routines maintain a system
global variable called the current screen, and most of the routines act on this current screen. In order to send
graphics commands, you must first set the current screen with a call to VOscSelect or TscSetCurrentScreen.

The screen object is the highest object in the DataViews hierarchy of data structures. Screen objects contain
drawports which contain views, which contain drawing objects, which contain graphical objects.

The screen object keeps track of the drawport ordering, meaning which drawport is in front of which, by keeping a
visibility list of drawports. This list is updated when you create, change, or move drawports. Also, when a graphical
object is drawn in a drawport, DV-Tools must clip the object so it is in the viewport and out of the obscuring
viewports. This is done automatically when you use the T and VO routines, as opposed to the GR routines which do
not perform any clipping.

The VOsc routines keep track of the current screen, which is the screen object to which screen operations are
performed. Most VOsc routines operate on the current screen. The only functions that require a screen object
argument are VOscSelect, which sets the current screen to the specified screen, and VOscValid, which determines if
the screen object is valid.

VOscWinEventMask and VOscWinEventPoll use flags and fields from the WINEVENT structure, which contains
information about events that occur in windowing systems, such as key strokes, mouse motion, and window resizing
and exposure. A listing of the structure is located under DataViews Public Types in the Include Files chapter.

Note that some routines work even if no screens are open, although most routines return immediately if there is no
current screen.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOsc Functions
VOscBackcolor Sets background color for the screen.
VOscClose Closes a screen for display.
VOscClosePoll Ends locator polling.
VOscCurrent Returns the currently selected screen.
VOscDeviceName Returns device name of the current screen.
VOscDraw Redraws all the viewports, without erasing.
VOscForecolor Sets foreground color for the screen.
VOscLocate Synchronous locator read for the screen.
VOscLoSet Sets initial locator position for the screen.
VOscOpen Opens a screen for display.
VOscOpenClut Opens screen for color table display.
VOscOpenClutSet Opens screen for color table display and sets

window attributes.
VOscOpenPoll Starts locator polling.
VOscOpenSet Opens screen and sets window attributes.
VOscPoll Polls the locator device of the screen.
VOscRedraw Erases and redraws all the viewports.
VOscReset Resets the size of the current screen.
VOscSelect Selects the screen as the current output device.
VOscSize Returns size of the screen.
VOscUnlocate Pushes the location onto the cursor event queue.
VOscValid See VOobValid.
VOscWinEventMask Sets the screen’s window event mask.
VOscWinEventPoll Gets the next window event from the queue of

the current screen.
A VOsc routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOsc routine to save the overhead of an additional routine call.

VOscBackcolor

 VOsc Functions VO Routines

Sets background color for the screen.

OBJECT
VOscBackcolor (

OBJECT color_obj)

VOscBackcolor sets the background color for the current screen to color_obj. Returns the old color. If the
background color is NULL, returns the current color.

VOscClose

 VOsc Functions VO Routines

Closes the current screen for display.

void
VOscClose (void)

VOscClosePoll

 VOsc Functions VO Routines

Closes locator cursor polling for the current screen.

void
VOscClosePoll (void)

VOscCurrent

 VOsc Functions VO Routines

Returns the currently selected screen.

OBJECT
VOscCurrent (void)

VOscDeviceName

 VOsc Functions VO Routines

Returns device name of the currently selected screen.

char *
VOscDeviceName (

OBJECT screen)

VOscDraw

 VOsc Functions VO Routines

Redraws all the viewports, without erasing.

void
VOscDraw (

RECTANGLE *svp)

VOscDraw redraws, without erasing, all the viewports in svp. This routine should be used when erasing the
background is unnecessary, such as when the screen has just been erased, or parts of drawings have been erased and
only pieces need to be put back in. This is usually faster than erasing and completely redrawing the screen.

VOscForecolor

 VOsc Functions VO Routines

Sets foreground color for the screen.

OBJECT
VOscForecolor (

OBJECT color_obj)

VOscForecolor sets the foreground color for the current screen to color_obj. Returns the old color. If the foreground
color is NULL, returns the current color.

VOscLocate

 VOsc Functions VO Routines

Synchronous locator read for the screen.

OBJECT
VOscLocate (void)

VOscLocate is a synchronous locator read for the current screen. This routine waits for a keyboard press or a locator
pick, then returns the location object for that pick.

VOscLoSet

 VOsc Functions VO Routines

Sets initial locator position for the screen.

OBJECT
VOscLoSet (

DV_POINT *p)

VOscLoSet puts the initial locator position for the current screen into the point p.

VOscOpen

 VOsc Functions VO Routines

Opens a screen for display.

OBJECT
VOscOpen (

char *device)

VOscOpen opens device for display, and returns the associated screen object.

VOscOpenClut

 VOsc Functions VO Routines

Opens screen for color table display.

OBJECT
VOscOpenClut (

char *device_name,
char *clutfile)

VOscOpenClut opens a screen for display with the color lookup table contained in the file, clutfile. This file is a list
of red, green, and blue intensities in the range [0,255], one set for each index. See also TscOpen and
TscOpenWindow.

VOscOpenClutSet

 VOsc Functions VO Routines

Opens screen for color table display and sets window attributes.

OBJECT
VOscOpenClutSet (

char *dev_name,
char *clutfile,

ULONG flag, <type> value,
ULONG flag, <type> value,
...,

V_END_OF_LIST)

VOscOpenClutSet opens the device, dev_name, specifies the color lookup table, clutfile, sets device attributes, and
returns a new screen object representing that device. The device attributes are set using a variable length argument
list of flag/value pairs. The list must terminate with V_END_OF_LIST or 0. See TscOpenSet for descriptions of the
device attributes. The attribute flags, defined in the header file dvGR.h, are also used by GRopen_set, GRset,
VUopendev_set, and VOscOpenSet. See VOscOpenSet below for an example of opening a screen using the attribute
flags.

VOscOpenPoll

 VOsc Functions VO Routines

Starts locator cursor polling for the current screen.

void
VOscOpenPoll (void)

VOscOpenSet

 VOsc Functions VO Routines

Opens screen and sets window attributes.

OBJECT
VOscOpenSet (

char *dev_name,
ULONG flag, <type> value,
ULONG flag, <type> value,
...,

V_END_OF_LIST)

VOscOpenSet opens the device, dev_name, sets device attributes, and returns a new screen object representing that
device.

The device’s attributes are set using a variable length argument list of flag/value pairs. Each pair of parameters starts
with an attribute flag which specifies the particular attribute of the device to be set. The second argument sets the
value of the attribute. The list must terminate with V_END_OF_LIST or 0. See TscOpenSet for the attribute flags and
descriptions of the attributes.

For example, to open a screen as an X11 window 800 pixels high by 600 pixels wide with an upper left position of
(100, 100) relative to the screen origin, you could call:

screen = VOscOpenSet ("X1", V_WINDOW_X, 100, V_WINDOW_Y, 100, V_WINDOW_WIDTH, 800,
V_WINDOW_HEIGHT, 600, V_END_OF_LIST);

Examples of attributes are window width and height, window name, and for externally created windows, the
window id. The attributes are specified as integer constant flags. The attribute flags, defined in the header file
dvGR.h, are also used by TscOpenSet, GRopen_set, GRset, VUopendev_set, and VOscOpenClutSet.

VOscPoll

 VOsc Functions VO Routines

Polls the locator device of the screen.

OBJECT
VOscPoll (void)

VOscPoll polls the locator for the current screen and returns a locator object. The locator object gives the current
position and key press, if any.

VOscRedraw

 VOsc Functions VO Routines

Erases and redraws all the viewports.

void
VOscRedraw (

RECTANGLE *svp)

VOscRedraw erases and redraws all the viewport objects that intersect the viewport, svp, specified in screen
coordinates. If the viewport is NULL, the entire screen is redrawn.

VOscReset

 VOsc Functions VO Routines

Resets the size of the current screen.

void
VOscReset (void)

VOscReset resets the size of the current screen and all of the viewport objects. To be used after resizing a window in
a window system.

VOscSelect

 VOsc Functions VO Routines

Selects the screen as the current output device.

OBJECT
VOscSelect (

OBJECT screen)

VOscSelect selects screen as the current output device. This routine returns the previous current screen.

VOscSize

 VOsc Functions VO Routines

Returns size of the screen.

DV_POINT *
VOscSize (void)

VOscSize returns a pointer to a point giving the pixel position of the upper right corner of the current screen. To
convert the position coordinates to the actual screen size, add 1 to each coordinate value.

VOscUnlocate

 VOsc Functions VO Routines

Pushes the location onto the cursor event queue.

void
VOscUnlocate (

OBJECT location)

VOscUnlocate pushes the location onto the cursor event queue. This location is returned by a previous call to a
simple polling routine such as TloPoll. This routine does not support location objects returned by window event
polling.

VOscWinEventMask

 VOsc Functions VO Routines

Sets the screen’s window event mask.

OBJECT
VOscWinEventMask (

ULONG mask,
ULONG altmask)

VOscWinEventMask sets the current screen’s event mask, mask, which specifies which DataViews window event
types are returned by VOscWinEventPoll, VOloType, or VOloWinEventPoll. The mask is an unsigned long integer in
which each bit represents a different type of window event. The mask is constructed by bitwise-ORing the
WINEVENT type flags representing the events to be noted. The mask acts as a positive filter which passes only the
desired events occurring in that window to the event queue. For example, the call:

VOscWinEventMask ((ULONG) V_KEYPRESS | V_MOTIONNOTIFY,
(ULONG) 0);

lets the polling routines report only key press and mouse motion events. The WINEVENT type flags are listed below.
If no mask is set, the default mask passes the following events to the event queue: key press, key release, button
press, button release, motion notify, window quit, enter notify, leave notify, iconify, expose, and resize. Note that
you should include all event types required for the input objects in the window. For example, if you have a slider
that updates on cursor motion and a button input object that responds to both button presses and releases, you should
OR V_MOTION_NOTIFY, V_BUTTONPRESS, and V_BUTTONRELEASE in the event mask.

Certain event type flags require additional information to be specified in altmask. altmask is an unsigned long
integer that is interpreted with a special flag in mask. For example, when the flag V_XWINDOW_MASK is ORed
into mask, it tells VOscWinEventMask to look in altmask for an X11 event mask. This allows any X Window event
to be returned. If the event does not fall into one of the standard DataViews event types, it is returned in the
WINEVENT type field as V_NON_STANDARD_EVENT.

To interpret a system-dependent event, you can access the eventdata field of the WINEVENT structure, where the
windowing system’s event data structure is copied. For example, under X the XEvent structure is copied into the
eventdata field. Refer to your windowing system manual for more information about how it handles events,
including for flags for altmask and the system-specific event data structure.

Normally, VOscWinEventMask replaces the previous window event mask. However, if the V_ADD_TO_MASK flag
is ORed into mask, the events are added to the existing mask. See also GRwe_gmask and GRget, which you can use
to get the current mask and altmask respectively.

The following WINEVENT type flags can be used to construct the mask parameter:

V_KEYPRESS Any key press, including modifier keys (<Shift>, <Control>, etc.) and function keys.
V_KEYRELEASE Any key release, including modifier keys (<Shift>, <Control>, etc.) and function keys.
V_BUTTONPRESS Any mouse button press.
V_BUTTONRELEASE Any mouse button release.
V_MOTIONNOTIFY Any motion of the mouse, with or without the mouse buttons down.
V_ENTERNOTIFY The mouse entering the window.
V_LEAVENOTIFY The mouse leaving the window.
V_WINDOW_ICONIFY User requests a window iconify.
V_EXPOSE Some portion of the window is now exposed and needs to be redrawn.
V_RESIZE The window size changes.

V_WINDOW_QUIT User requests a window quit.

The following modifiers can be ORed with the window event mask:

V_EVENTS_OFF Turns off all events, regardless of events that have been ORed into the mask.
V_ADD_TO_MASK Indicates that the flags should be added to the current mask, not replace it. This

applies only to mask, not altmask.
V_XWINDOW_MASK Indicates altmask is an X11 event mask.

Returns the current screen object when successful. Otherwise returns NULL.

VOscWinEventPoll

 VOsc Functions VO Routines

Gets the next window event from the queue of the current screen.

OBJECT
VOscWinEventPoll (

int mode)

VOscWinEventPoll returns a location object representing the next window event in the event queue. Only events
from the current screen are returned. Only event types passed by the mask, either the default mask or one set by
VOscWinEventMask, are returned. If no mask is set, the default mask passes the following events to the event queue:
key press, key release, button press, button release, motion notify, window quit, enter notify, leave notify, iconify,
expose, and resize. If the screen contains widgets, the event queue may contain non-DataViews events. These events
are always passed onto the queue, regardless of the event mask.

mode specifies which type of polling mode to use. When the event queue is empty, if mode is V_WAIT,
VOscWinEventPoll does not return until an event specified by mask or altmask is generated. If mode is V_NO_WAIT,
VOscWinEventPoll does not wait until an event is generated, but returns NULL instead of the location object.

The difference between this routine and VOscPoll is that VOscWinEventPoll returns window events such as key
releases, button releases, function keys, exposure, and resize. This information can be extracted from the location
object using the VOlocation routines. Otherwise, location objects returned by VOscWinEventPoll can be used just
like location objects returned from TloPoll. To get the next event from any window using the event queue, use
VOloWinEventPoll.

VOsd (VOsubdrawing)
VOsd Functions VO Routines

Manages subdrawing objects (sd). The subdrawing object is the mechanism used to include high level objects in
drawings. It lets a view refer to another view, either by directly including it, or by referencing the view filename.
The latter approach lets you update subdrawings globally by changing the referenced view.

In a referenced subdrawing, the contents are not saved when the subdrawing is saved; only the filename is saved.
When the subdrawing is read, the file containing the view is opened and read, and the subdrawing is updated with
changes in the saved view. In an included subdrawing, the contents are saved with the subdrawing and the
subdrawing is protected from changes to the referenced view. Using included subdrawings results in larger, self-
contained files; using referenced subdrawings results in more compact files that reflect changes in the referenced
views.

The dynamics of a view can be enabled or disabled when it is used as a subdrawing. These internal dynamics of the
subdrawing should not be confused with dynamics applied to a subdrawing by attaching a dynamic control object.
The internal dynamics of disabled subdrawings are not active. The internal dynamics of enabled subdrawings (active
subdrawings) are active and can receive their data in two ways: from the data source variables in the referenced
view (source data source variables) or from data source variables in the higher-level view (destination data source
variables).

To receive data from data sources in the higher-level view, the source variables in the source view are mapped to
destination variables in the higher-level view. When a source variable is mapped, all references to it are severed and
rebound to the destination data source variable. The mapping is normally resolved when the high-level view is
drawn, but can be resolved earlier. If you set the DVSD_DEACT_POOL configuration variable to YES, mappings are
resolved at load time for all subdrawings. To resolve the mappings immediately for a particular subdrawing, call
VOsdPoolRemove.

Note that you cannot clone a higher-level view after the mappings in it are resolved. To clone a view that contains
mappings, you must clone it before the mappings are resolved. Also note that you must set the
DVSD_DEACT_POOL configuration variable to NO to prevent the mappings from being resolved at load time.

You can change the mappings programmatically using VOsdSetDsvMapping. Note that source data source variables
must be global to be mapped.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOsd Functions
VOsdAtGet See VOobAtGet.
VOsdAtSet See VOobAtSet.
VOsdBox See VOobBox.
VOsdClone See VOobClone.
VOsdCreate Creates and returns a subdrawing.
VOsdDereference See VOobDereference.
VOsdFilename Gets the filename of the subdrawing.
VOsdGetDsvMapping Gets the mapping for a data source variable in a subdrawing.
VOsdGetDynamicFlag Determines whether or not a subdrawing’s dynamics are enabled.
VOsdGetSelectedObject Gets the selected object in the subdrawing.
VOsdGetXform Gets the transformation object of a subdrawing.
VOsdGetXformParams Gets the transformation parameters.
VOsdHasDummyView Returns the status of the view contained in the subdrawing.
VOsdIntersect See VOobIntersect.
VOsdPoolFnmRemove Removes a view filename from the pool.
VOsdPoolRemove Removes a subdrawing from the pool.
VOsdPtGet See VOobPtGet.
VOsdPtSet See VOobPtSet.
VOsdRefCount See VOobRefCount.
VOsdReference See VOobReference.
VOsdRotate Rotates the subdrawing.
VOsdScale Scales the subdrawing.
VOsdSetDsvMapping Sets the mapping for a data source variable in a subdrawing.
VOsdSetDynamicFlag Controls whether or not a subdrawing’s dynamics are enabled.
VOsdSetXformParams Sets the transformation parameters.
VOsdStatistic Returns statistics about subdrawings.
VOsdTraverse See VOobTraverse.
VOsdValid See VOobValid.
VOsdViGet Gets the view referenced by a subdrawing.
VOsdViKeep Determines whether to keep the view when saving the

subdrawing.
VOsdViReplace Replaces the view referenced by a subdrawing, returning the

previous one.
VOsdViSet Sets the view referenced by a subdrawing, destroying the previous

one.
VOsdXfBox See VOobXfBox.
VOsdXformBox See VOobXformBox.
VOsdXScale Scales the subdrawing in the x direction.
VOsdYScale Scales the subdrawing in the y direction.
A VOsd routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOsd routine to save the overhead of an additional routine call.

VOsdCreate

 VOsd Functions VO Routines

Creates and returns a subdrawing.

OBJECT
VOsdCreate(

char *filename,
VIEW view,
OBJECT anchorpt,
double scale,
ATTRIBUTES *attributes)

VOsdCreate creates and returns a subdrawing. Either filename or view can be NULL. If both are NULL, the function
returns NULL without doing anything. If a filename is specified, the subdrawing defaults to referenced. If a filename
is specified but the file cannot be located, returns NULL. If the filename is NULL, the subdrawing defaults to
included. If both are specified, it defaults to referenced. The anchor point, anchorpt, is the position in the drawing
where the referenced view’s origin is located. The origin, (0,0) in world coordinates, corresponds to the center of the
view. The scale factor, scale, is used to convert from the referenced view’s coordinate system to the drawing
coordinate system. The valid field flag for attributes is FOREGROUND_COLOR. To support pre-9.0 code, a
drawing object can be passed as view, but the internal dynamics of the subdrawing are always disabled.

VOsdFilename

 VOsd Functions VO Routines

Gets the filename of the subdrawing.

char *
VOsdFilename (

OBJECT subdrawing)

VOsdFilename returns the address of the filename string for the subdrawing. The filename string is an internal
structure which should not be modified. Returns NULL if you created the subdrawing in DV-Tools and specified a
NULL filename at that time.

VOsdGetDsvMapping

 VOsd Functions VO Routines

Gets the mapping for a data source variable in a subdrawing.

int
VOsdGetDsvMapping (

OBJECT subdrawing,
int index,
DSVAR *src_dsvar,
DSVAR *dst_dsvar)

VOsdGetDsvMapping gets the mapping of a source variable in an active subdrawing to its destination variable. index
is the one-based index of the source variable in the subdrawing’s list of mapped data source variables. If index is 0,
returns the number of mapped variables. If index is greater than 1, the return value is 0 and the mapping is returned
in src_dsvar and dst_dsvar. If src_dsvar is not currently mapped, NULL is returned in dst_dsvar. This routine is only
useful after calling TdpDraw because the mappings are not resolved until then.

VOsdGetDynamicFlag

 VOsd Functions VO Routines

Determines whether or not a subdrawing’s dynamics are enabled.

int
VOsdGetDynamicFlag (

OBJECT subdrawing)

VOsdGetDynamicFlag returns a flag indicating whether or not the subdrawing’s internal dynamics are enabled.
Valid values for the returned flag are:

SD_DYN_NONE The subdrawing has no internal dynamics.
SD_DYN_ENABLED The internal dynamics of the subdrawing are active.
SD_DYN_DISABLED The internal dynamics of the subdrawing are inactive

VOsdGetSelectedObject

 VOsd Functions VO Routines

Gets the selected object in the subdrawing.

OBJECT
VOsdGetSelectedObject (

OBJECT subdrawing,
OBJECT location,
OBJECT xform,
int check_mode)

VOsdGetSelectedObject gets the object in the subdrawing selected by the location object, location. If the
subdrawing is the direct child of the highest level drawing, xform is NULL. Otherwise, it is the transformation from
the subdrawing to the highest level drawing, including all intermediate subdrawings. Use VOsdGetXform to get the
transformation object for each level. Concatenate the transformations together to produce a single transformation
from the subdrawing to the highest level drawing. The direction of the transformation must be from the subdrawing
to the highest level drawing. If check_mode is NAMED_SEARCH, only checks named objects in the drawing. If
check_mode is FULL_SEARCH, checks all objects. Returns the object if an object is selected. Otherwise, returns
NULL.

VOsdGetXform

 VOsd Functions VO Routines

Gets the transformation object of a subdrawing.

OBJECT
VOsdGetXform (

OBJECT subdrawing)

VOsdGetXform gets the transformation object from a subdrawing to its parent object. The transformation object
should not be altered. Returns the transformation object.

VOsdGetXformParams

 VOsd Functions VO Routines

Gets the transformation parameters.

void
VOsdGetXformParams (

OBJECT subdrawing,
double *angle,
double *xscale,
double *yscale)

VOsdGetXformParams gets the transformation parameters angle, xscale, and yscale for the subdrawing.

VOsdHasDummyView

 VOsd Functions VO Routines

Returns the status of the view contained in the subdrawing.

BOOLPARAM
VOsdHasDummyView (

OBJECT subdrawing)

VOsdHasDummyView determines whether the external subdrawing file was available when it was created.
VOsdHasDummyView returns TRUE if the external file was not available. (The user sees a view with a text object
that gives the name of the missing file in place of the actual subdrawing.) Returns FALSE if the correct subdrawing
is being displayed.

VOsdPoolFnmRemove

 VOsd Functions VO Routines

Removes a view filename from the pool.

void
VOsdPoolFnmRemove (

char *filename)

VOsdPoolFnmRemove removes a filename from the pool. The next time a subdrawing referring to the same
filename is loaded or created, the view is loaded from the file and the filename is added to the pool again. This
routine is useful when you have changed a view file and want subsequent subdrawings to reflect the changes.

VOsdPoolRemove

 VOsd Functions VO Routines

Removes a subdrawing from the pool.

void
VOsdPoolRemove (

OBJECT subdrawing)

VOsdPoolRemove removes a referenced subdrawing from the pool. This is useful when you plan to change the
subdrawing’s view programmatically, but do not want the changes to affect other drawings that refer to the same
view. When you remove the subdrawing from the pool, any changes are confined to the subdrawing and are not
proliferated to other subdrawings that refer to the same view file. This routine also resolves the data source variable
mappings in the subdrawing.

VOsdRotate

 VOsd Functions VO Routines

Rotates the subdrawing.

double
VOsdRotate (

OBJECT subdrawing,
double angle;

VOsdRotate rotates the subdrawing by the angle, in degrees, and returns the new angle, which is the sum of the
angle and all previous rotation angles. If the angle is zero, the routine doesn’t change the angle setting for the
subdrawing, but simply returns the current angle. A positive angle is counterclockwise.

VOsdScale

 VOsd Functions VO Routines

Scales the subdrawing.

double
VOsdScale (

OBJECT subdrawing,
double scale)

VOsdScale scales the subdrawing to the scale and returns the new scale factor, which is the product of the scale
factor and all previous scale factors. If the scale is 0, the routine returns the current scale factor without changing the
old one.

VOsdSetDsvMapping

 VOsd Functions VO Routines

Sets the mapping for a data source variable in a subdrawing.

int
VOsdSetDsvMapping (

OBJECT subdrawing,
DSVAR src_dsvar,
DSVAR dst_dsvar)

VOsdSetDsvMapping sets the mapping of a source variable in an active subdrawing to its destination variable. The
source variable, src_dsvar, must be a global data source variable in the view referenced by the subdrawing. If the
destination variable, dst_dsvar, is NULL, the mapping is removed and the source variable subsequently supplies the
data. Otherwise maps the source variable to the destination variable. Returns DV_SUCCESS if the mapping or
unmapping was successful, otherwise returns DV_FAILURE. After a successful mapping, all variable descriptors and
function data source arguments that previously obtained their data from src_dsvar now obtain their data from
dst_dsvar. For the change to take effect, you must call TdpDraw after the remapping.

VOsdSetDynamicFlag

 VOsd Functions VO Routines

Controls whether or not a subdrawing’s dynamics are enabled.

void
VOsdSetDynamicFlag (

OBJECT subdrawing,
int flag)

VOsdSetDynamicFlag sets the flag controlling whether or not the dynamics within the subdrawing’s internal
dynamics are enabled. Valid values for flag are:

SD_DYN_ENABLED Makes the internal dynamics of the subdrawing active.
SD_DYN_DISABLED Makes the internal dynamics of the subdrawing inactive.
SD_DYN_RESET Resets the flag after a change to the internal dynamics.

If the subdrawing is enabled after TviOpenData has been called, this routine must be followed by a call to
TviOpenData on the referenced view. If the subdrawing is disabled after TviOpenData has been called, this routine
must be followed by a call to TviCloseData on the referenced view.

If you modify the internal dynamics of a subdrawing, you must call VOsdSetDynamicFlag with SD_DYN_RESET to
reset the subdrawing’s dynamic state and update its internal deque of dynamic objects. If the subdrawing previously
had no dynamics, the new state is SD_DYN_DISABLED. To enable the dynamics, you must call
VOsdSetDynamicFlag a second time to set the dynamic state to SD_DYN_ENABLED. Note that you should not
enable dynamics on a subdrawing within another subdrawing using this routine. You should do this only using DV-
Draw.

VOsdSetXformParams

 VOsd Functions VO Routines

Sets the transformation parameters.

void
VOsdSetXformParams (

OBJECT subdrawing,
double *angle,
double *xscale,
double *yscale)

VOsdSetXformParams sets the transformation parameters angle, xscale, and yscale for the subdrawing. The
parameters must be passed by reference. If the address of the parameter is NULL, that parameter is unaffected.

VOsdStatistic

 VOsd Functions VO Routines

Returns statistics about subdrawings.

LONG
VOsdStatistic (

int flag)

VOsdStatistic returns statistics about subdrawings, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of subdrawings.

VOsdViGet

 VOsd Functions VO Routines

Returns the view referenced by a subdrawing.

VIEW
VOsdViGet (

OBJECT subdrawing)

VOsdViKeep

 VOsd Functions VO Routines

Determines whether to keep the view when saving the subdrawing.

BOOLPARAM
VOsdViKeep (

OBJECT subdrawing,
int save_the_view)

VOsdViKeep sets the internal flag that determines how the subdrawing is saved. If save_the_view is YES, the view is
saved with the subdrawing along with the name of the file containing the view. This is the included case. If the flag
is NO, only the view filename is saved. This is the referenced case. If an invalid value of save_the_view is passed,
the routine doesn’t change the flag value; instead it returns the current value of the flag.

VOsdViReplace

 VOsd Functions VO Routines

Replaces the view referenced by a subdrawing, returning the previous one.

VIEW
VOsdViReplace (

OBJECT subdrawing,
char *filename,
VIEW view)

VOsdViReplace replaces the view referenced by the subdrawing. Either filename, view, or both must be valid.
Returns the previous view.

VOsdViSet

 VOsd Functions VO Routines

Sets the view referenced by a subdrawing, destroying the previous one.

void
VOsdViSet (

OBJECT subdrawing,
char *filename,
VIEW view)

VOsdViSet sets the view referenced by the subdrawing. Either filename, view, or both must be valid. The previous
view is destroyed.

VOsdXScale

 VOsd Functions VO Routines

Scales the subdrawing in the x direction.

double
VOsdXScale (

OBJECT subdrawing,
double scale)

VOsdXScale scales the subdrawing’s x coordinate and returns the new x scale factor. If the new scale factor is 0, the
routine returns the current scale factor without change.

VOsdYScale

 VOsd Functions VO Routines

Scales the subdrawing in the y direction.

double
VOsdYScale (

OBJECT subdrawing,
double scale)

VOsdYScale scales the subdrawing’s y coordinate and returns the new y scale factor. If the new scale factor is 0, the
routine returns the current scale factor without change.

VOsf (VOscalablefont)
VOsf Functions VO Routines

Manages scalable font objects (sf).

Scalable font objects scale with the drawing and are more flexible than vector text objects because you can use any
native font on your system. This includes True Type fonts.

Scalable font attributes are underline, weight, point size, width, height, angle, slant, foreground color, and fontname.
The scalable font object is attached to the drawing at an anchor point.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOsf Functions
VOsfAtGet See VOobAtGet.
VOsfAtSet See VOobAtSet.
VOsfBox See VOobBox.
VOsfClone See VOobClone.
VOsfCreate Creates and returns a scalable font object.
VOsfDereference See VOobDereference.
VOsfGetString Gets the string value of the scalable font object.
VOsfIntersect See VOobIntersect.
VOsfPtGet See VOobPtGet.
VOsfPtSet See VOobPtSet.
VOsfRefCount See VOobRefCount.
VOsfReference See VOobReference.
VOsfSetString Sets new string value for the scalable font object.
VOsfStatistic Returns statistics about scalable font objects.
VOsfTraverse See VOobTraverse.
VOsfValid See VOobValid.
VOsfXfBox See VOobXfBox.
VOsfXformBox See VOobXformBox.
A VOsf routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOsf routine to save the overhead of an additional routine call.

VOsfCreate

 VOsf Functions VO Routines

Creates and returns a scalable font object.

OBJECT
VOsfCreate (

char *string,
OBJECT anchor_pt,
ATTRIBUTES *attributes)

VOsfCreate creates and returns a scalable font object. string is a NULL-terminated character string containing the
text content of the object. The anchor point, anchor_pt, is the point object that defines where the text string appears
on the screen. Valid attributes field flags are:

TEXT_UNDERLINE TEXT_WEIGHT
TEXT_PTSIZE TEXT_WIDTH
TEXT_SLANT TEXT_HEIGHT
TEXT_ANGLE TEXT_FONTNAME
FOREGROUND_COLOR

If attributes is NULL, default values are used.

VOsfGetString

 VOsf Functions VO Routines

Gets the string value of the scalable font object.

char *
VOsfGetString (

OBJECT sftext)

VOsfGetString returns a pointer to the string associated with the scalable font object. This is a pointer to an internal
data structure which should not be modified.

VOsfSetString

 VOsf Functions VO Routines

Sets new string value for the scalable font object.

void
VOsfSetString (

OBJECT sftext,
char *newstring)

VOsfSetString sets a new string value, newstring, for the scalable font object. If the new string is shorter than the old
string, it is simply copied into the old string’s buffer. Otherwise, storage is reallocated to allow for the increased
length.

VOsfStatistic

 VOsf Functions VO Routines

Returns statistics about scalable font objects.

LONG
VOsfStatistic (

int flag)

VOsfStatistic returns statistics about scalable font objects, depending on the value of flag. Valid flag values are
defined in VOstd.h. If flag is OBJECT_COUNT, returns the current number of scalable font objects.

VOsk (VOslotkey)
VOsk Functions VO Routines

Manages slots. A slot is a means of attaching information to objects. Slotkey objects associate a slot with the
information describing what the slot contains. A slot can contain an integer, an array of integers, a float, an array of
floats, an object, or a pointer to a NULL-terminated string.

You cannot create more than one slotkey with a given set of parameters. Slotkey creation is restricted by the absence
of a create function. To define a slotkey, you must declare it using VOskDeclare. If it has already been declared, the
routine returns the existing one. If the slotkey has not been declared, the routine creates and returns it. Slotkey
objects are never destroyed. Reference, clone, and dereference functions are defined but do nothing. Utilities for
operating on slots are provided in the VOobSlotUtil module described with the VOob routines.

The slotkey feature is intended for use by sophisticated DataViews users.

See Also
VOobSlotUtil

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOsk Functions
VOskClone Does nothing.
VOskDeclare Declares a slotkey object.
VOskDereference Does nothing.
VOskFind Gets an existing slotkey by name.
VOskGetKeyName Gets the name associated with the slotkey.
VOskGetType Gets type information from the slotkey.
VOskRefCount Does nothing.
VOskReference Does nothing.
VOskStatistic Returns statistics about slotkey objects.
VOskValid See VOobValid.
A VOsk routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOsk routine to save the overhead of an additional routine call.

VOskDeclare

 VOsk Functions VO Routines

Declares a slotkey object.

OBJECT
VOskDeclare (

char *KeyName,
int flag,
LONG size)

VOskDeclare declares and returns a slotkey object that has the keyname, KeyName, and the specified flag value. size
is an optional parameter that you use only to define a slotkey for an array type. DataViews reserves string names
beginning with V_. The slotkey object differs from other objects in that there can only be one instance of any given
keyname string and flag. Calling VOskDeclare with the keyname string and flag of an existing slotkey object is
equivalent to calling VOskFind. The flag parameter determines what kind of data to associate with the slotkey
object. Valid flags that can be used for defining slotkeys are:

VOSK_INT_TYPE VOSK_EXTERNAL_TYPE
VOSK_INT_ARRAY_TYPE VOSK_STRING_TYPE
VOSK_OBJECT_TYPE VOSK_FLOAT_TYPE
VOSK_FLOAT_ARRAY_TYPE

A slotkey declared with the flag VOSK_EXTERNAL_TYPE contains a pointer to external data types that must be
managed by the application.

VOskFind

 VOsk Functions VO Routines

Gets an existing slotkey by name.

OBJECT
VOskFind (

char *KeyName)

VOskFind finds an existing slotkey with the specified name, KeyName. Returns the slotkey if it exists. Otherwise
returns NULL.

VOskGetKeyName

 VOsk Functions VO Routines

Gets the name associated with the slotkey.

char *
VOskGetKeyName (

OBJECT slotkey)

VOskGetKeyName returns the slotkey’s keyname. The keyname is a pointer to an internal buffer; do not modify the
buffer directly.

VOskGetType

 VOsk Functions VO Routines

Gets type information from the slotkey.

void
VOskGetType (

OBJECT slotkey,
int *TypeFlag,
LONG *size)

VOskGetType returns the slotkey’s TypeFlag. Returns the size parameter when the slotkey is an array type. See
VOskDeclare for a list of possible typeflags.

VOskStatistic

 VOsk Functions VO Routines

Returns statistics about slotkey objects.

LONG
VOskStatistic (

int Flag)

VOskStatistic returns statistics about slotkeys depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of existing slotkey objects.

Examples
The following code fragment declares a slotkey object that associates an integer slot with the keyname string “INT”:

OBJECT integer_sk;
integer_sk = VOskDeclare ("INT", VOSK_INT_TYPE);

The following example retrieves the slotkey object associated with the keyname string “INT”:
integer_sk = VOskFind ("INT");

VOtt (VOthreshold)
VOtt Functions VO Routines

Manages threshold table objects (tt). The threshold table object maps a numerical value range to a set of output
values, either integers, floats, objects, or text strings. The table is a list of pairs in which each pair comprises a
numerical threshold in the range of [0,32767] and its associated output value. The list is sorted by increasing order
of the thresholds. All output values in a table must have the same type. If the output values are objects, however, you
can use more than one kind of object. Threshold table objects are used by dynamic control objects to supply values
for dynamic actions. See also the VOdy module.

When a threshold table is created, it has one output value and no thresholds. The output value is called an object, so
a new threshold table has only one object and no thresholds. At this time, the table returns its one output value for all
input data. In the following figure, the output value, or object, is labeled Ob0.

After creating a threshold table, you can add object-threshold pairs. Each pair includes a threshold point, labeled T1
in the figure below, and the output value above that point, labeled Ob1.

A threshold represents a boundary between two output values. Incoming data that is greater than the threshold point
maps to the output value associated with the threshold. Incoming data that is less than or equal to the threshold point
maps to the output value of the previous threshold. Since the threshold table has an output value before it has any
thresholds, it always has n thresholds and n+1 objects, as illustrated below.

In this figure, the square bracket,], indicates that the output value maps to values “less than or equal to the next
threshold point” and the parenthesis, (, indicates that the output value maps to values “greater than the associated
threshold point.”

Every time the data should be updated, such as after a call to TdpDrawNext, VOdyUpdate, or VOttUpdate, the table
gets input data using a variable descriptor object which normalizes the data in the range [0,32767]. The threshold
table compares the input datum to the thresholds in the table and generates an output datum of type DATUM
(discussed below), which can be an integer, float, object, or text string. The output datum is called the “current
output” of the table and is obtained by calling VOttDataGet. Before generating this output, the table saves the old
“current output” as the “last output,” which is obtained by calling VOttLastGet. If the table has been reset using
VOttReset, the current and last output data are both set to the initial datum of the table.

Many of these routines use DATUM type data structures, which are described in the #include file, VOstd.h. See the
examples section for an illustration of using the DATUM type data structure.

Updating the output of the threshold table can be handled at the higher level of the drawport or dynamic control
object. Operations such as adding and deleting thresholds must be handled using routines in this module.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOtt Functions
VOttAddThresh Adds a threshold to the table.
VOttBox Gets the union of the bounding boxes. Valid only for

threshold tables of graphical objects. See
VOobBox.

VOttClone See VOobClone.
VOttCreate Creates a threshold table of a specified type.
VOttDataGet Gets the current object from the table.
VOttDatCreate Creates a typed threshold table with datum.
VOttDelThresh Deletes a threshold from the table.
VOttDereference See VOobDereference.
VOttGetThresh Gets a threshold from the table.
VOttHasThresh Determines if the threshold table has a specific

threshold.
VOttIntersect Determines if the current datum intersects the

viewport. Valid only for threshold tables of
graphical objects. See VOobIntersect.

VOttLastGet Gets the object before the current object.
VOttRefCount See VOobRefCount.
VOttReference See VOobReference.
VOttReset Resets the threshold to initial state.
VOttScale Scales thresholds into new range.
VOttSetDatum Sets the datum for an existing threshold.
VOttSize Gets the number of thresholds in the table.
VOttStatistic Returns statistics about threshold table objects.
VOttTraverse See VOobTraverse.
VOttTypeGet Gets the type of the object returned by the threshold

table.
VOttUpdate Updates the object to show the current value.
VOttValid See VOobValid.
VOttVd Gets the variable descriptor object belonging to the

table.
VOttXfBox Gets the union of the bounding boxes in screen

coordinates. Valid only for threshold tables of
graphical objects. See VOobXfBox.

VOttXformBox See VOobXformBox.
A VOtt routines that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOtt routine to save the overhead of an additional routine call.

VOttAddThresh

 VOtt Functions VO Routines

Adds a threshold to the table.

void
VOttAddThresh (

OBJECT tt,
int thresh,
DATUM out)

VOttAddThresh adds a threshold-object pair (thresh, out) to the table, tt. The threshold value should be in the range
[0, 32767]. If the threshold value is V_UNDEFINED, the initial object, which has no associated threshold, is to be
replaced. If the threshold already exists, replaces its output datum with out. See the examples section for an
illustration of passing a DATUM.

VOttCreate

 VOtt Functions VO Routines

Creates a threshold table of a specified type.

OBJECT
VOttCreate (

OBJECT vd,
DATUM_TYPE type,
<type> value)

VOttCreate creates and returns a threshold table given a variable descriptor object, vd, and a type-value pair. Valid
type-value pairs are:

FLOAT_DATUM float
INT_DATUM int
OBJECT_DATUM (ob_type) OBJECT
TEXT_DATUM DV_TEXT

When type is OBJECT_DATUM, you must also supply the type of object, which is returned by VOobType. See also
VOttDatCreate.

VOttDataGet

 VOtt Functions VO Routines

Gets the current object from the table.

DATUM
VOttDataGet (

OBJECT tt)

VOttDataGet returns the current object from the threshold table, tt, that corresponds to the current datum value. See
the examples section for an illustration of how to get a value of a particular type from a DATUM.

VOttDatCreate

 VOtt Functions VO Routines

Creates a typed threshold table with datum.

OBJECT
VOttDatCreate (

OBJECT vd,
DATUM_TYPE type,
DATUM datum)

VOttDatCreate is the same as VOttCreate except that it passes in a DATUM instead of the actual value. See the
examples section for an illustration of passing a DATUM.

VOttDelThresh

 VOtt Functions VO Routines

Deletes a threshold from the table.

void
VOttDelThresh (

OBJECT tt,
int thresh)

VOttDelThresh deletes the threshold-object pair that has the threshold value, thresh, from the table, tt.

VOttGetThresh

 VOtt Functions VO Routines

Gets a threshold from the table.

void VOttGetThresh (
OBJECT tt,
int index,
int *thresh,
DATUM *out)

VOttGetThresh gets the index-th threshold-object pair from the table, tt. If index is zero, the routine gets the original
table entry, whose associated threshold value is returned as V_UNDEFINED.

VOttHasThresh

 VOtt Functions VO Routines

Determines if the threshold table has a specific threshold.

int
VOttHasThresh (

OBJECT tt,
int thresh)

VOttHasThresh determines if the threshold table, tt, has the specified threshold, thresh. If the table has a threshold at
that value, returns the 1-based index of the threshold. Otherwise returns 0.

VOttLastGet

 VOtt Functions VO Routines

Gets the object before the current object.

DATUM
VOttLastGet (

OBJECT tt)

VOttLastGet returns the last output datum (the one that was the current output datum before the last call to
VOttUpdate, VOdyUpdate, or TdpDrawNext) from the threshold table, tt. See the examples section for an illustration
of how to get a value of a particular type from a DATUM.

VOttReset

 VOtt Functions VO Routines

Resets the threshold to its initial state.

void
VOttReset (

OBJECT tt)

VOttScale

 VOtt Functions VO Routines

Scales thresholds into new range.

void
VOttScale (

OBJECT tt,
double scale_factor,
double offset)

VOttScale scales thresholds into new range. Each threshold value is multiplied by scale_factor and added to offset. It
is the programmer’s responsibility to make sure these numbers do not result in threshold values outside the range
[0,32767].

VOttSetDatum

 VOtt Functions VO Routines

Sets the datum for an existing threshold.

void
VOttSetDatum (

OBJECT tt,
int thresh,
DATUM out)

VOttSetDatum changes the output datum associated with a threshold, thresh. out is the new output datum. thresh
must correspond to an existing threshold in the table; if not, no change occurs. To change the original threshold table
entry, use V_UNDEFINED for thresh.

VOttSize

 VOtt Functions VO Routines

Gets the number of thresholds in the table.

int
VOttSize (

OBJECT tt)

VOttSize returns the number of thresholds in the table, tt. This does not include the original object in the table.
Therefore, if VOttAddThresh has never been called, this routine returns zero.

VOttStatistic

 VOtt Functions VO Routines

Returns statistics about threshold table objects.

LONG
VOttStatistic (

int flag)

VOttStatistic returns statistics about threshold tables, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of threshold tables.

VOttTypeGet

 VOtt Functions VO Routines

Gets the type of the object returned by the threshold table.

DATUM_TYPE
VOttTypeGet (

OBJECT tt)

VOttTypeGet returns the type of the object returned by tt. To determine the type of the threshold, use the macros
IS_FLOAT_DATUM, IS_INT_DATUM, IS_OBJECT_DATUM and IS_TEXT_DATUM, defined in VOstd.h. See
VOttCreate for a list of valid threshold table types. If the threshold is type OBJECT_DATUM, the type also contains
a sub-flag indicating the object type of the first object (Datum0) in the table (obtained using the DATUM_O_TYPE
macro).

VOttUpdate

 VOtt Functions VO Routines

Updates the object to show the current value.

void
VOttUpdate (

OBJECT tt)

VOttUpdate updates the threshold table, tt, to a new current output datum. This routine is called by these higher level
functions that update drawings: TdpDrawNext, TdpDrawNextObject, VOdyUpdate.

VOttVd

 VOtt Functions VO Routines

Returns the variable descriptor object associated with the table.

OBJECT
VOttVd (

OBJECT tt)

Examples
Threshold tables can be built from various types, all of which are passed to the threshold table routines as DATUMs.
A union, the DATUM_DESC, is used to convert DATUMs to the other types, and vice versa.

The following code fragment passes a float to VOttAddThresh as a DATUM.
DATUM_DESC dd;
float fnum;

dd.f = fnum;
VOttAddThresh (tt, threshold, dd.DATUM_alias);

The following code fragment gets a DATUM value from the threshold table, then converts it to a float.
dd.DATUM_alias = VOttDataGet (tt);
fnum = dd.f;

The following code fragment creates a threshold table of doubles. You can also create a threshold table in DV-Draw.
OBJECT vd, threshtab;
float fnum1, fnum2, fnum3;
DATUM_DESC dd;

dsv = TdsvCreate();
TdsvEditAttributes (dsv, NULL, V_F_TYPE, 1, 1, NULL);
vd = VOvdCreate (dsv, ’n’, (DATUM)defaultnumber);
vdp = VOvdGetVdp (vd);
VPvd_drange (vdp, 0.0, 1.0); /*set vdp active range */
/* Create threshold table of doubles, with fnum1 as the first value. fnum1 is passed as a DATUM. */
dd.f = fnum1;
threshtab = VOttCreate (vd, FLOAT_DATUM, dd.DATUM_alias);
/* Add fnum2 and fnum3 to the threshold table, passing them as DATUMs. */
dd.f = fnum2;
VOttAddThresh (threshtab, 1*32767/3, dd.DATUM_alias);
dd.f = fnum3;
VOttAddThresh (threshtab, 2*32767/3, dd.DATUM_alias);

VOtx (VOtext)
VOtx Functions VO Routines

Manages text objects (tx). A text object is a screen coordinate-based object, which means it is a bitmap that is not
affected by scaling or zooming into the drawing in which it is embedded. Text object attributes are foreground color,
background color, text direction, text justification (position), and text size. The text object is attached to the drawing
at an anchor point which can be in one of nine positions with respect to the string bitmap. These positions can be
summarized as the cross-product of the sets:

{ AT_LEFT_EDGE, CENTERED, AT_RIGHT_EDGE } X
{ AT_TOP_EDGE, CENTERED, AT_BOTTOM_EDGE }

A point object can be created with screen coordinates relative to the anchor point, so that figures can be defined with
respect to the string. For example, you can use these point objects to construct a box around the string which is
always displayed around the string, regardless of the drawing’s scale.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOtx Functions
VOtxAtGet See VOobAtGet.
VOtxAtSet See VOobAtSet.
VOtxBox See VOobBox.
VOtxClone See VOobClone.
VOtxCreate Creates and returns a text object.
VOtxDereference See VOobDereference.
VOtxGetString Gets the string value of the text object.
VOtxIntersect See VOobIntersect.
VOtxPtGet See VOobPtGet.
VOtxPtSet See VOobPtSet.
VOtxRefCount See VOobRefCount.
VOtxReference See VOobReference.
VOtxSetString Sets new string value for the text object.
VOtxStatistic Returns statistics about text objects.
VOtxTraverse See VOobTraverse.
VOtxValid See VOobValid.
VOtxXfBox See VOobXfBox.
VOtxXformBox See VOobXformBox.
A VOtt routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOtx routine to save the overhead of an additional routine call.

VOtxCreate

 VOtx Functions VO Routines

Creates and returns a text object.

OBJECT
VOtxCreate (

char *string,
OBJECT anchor_pt,
ATTRIBUTES *attributes)

VOtxCreate creates and returns a text object. String is a NULL-terminated character string containing the text to be
drawn when the object is drawn on the screen. The anchor point, anchor_pt, is the point object in the drawing where
the text string is attached. Valid flag values for attributes are:

TEXT_DIRECTION TEXT_POSITION
TEXT_SIZE FOREGROUND_COLOR
BACKGROUND_COLOR

If attributes is NULL, default values are used.

VOtxGetString

 VOtx Functions VO Routines

Gets the string value of the text object.

char *
VOtxGetString (

OBJECT text)

VOtxGetString returns a pointer to the string associated with the text object. This pointer points to an internal data
structure which should not be modified.

VOtxSetString

 VOtx Functions VO Routines

Sets new string value for the text object.

void
VOtxSetString (

OBJECT text,
char *newstring)

VOtxSetString sets a new string value for the text object. If newstring is shorter than the old string, it is simply
copied into the old string’s buffer. Otherwise, storage is re-allocated to allow for the increased length.

VOtxStatistic

 VOtx Functions VO Routines

Returns statistics about text objects.

LONG
VOtxStatistic (

int flag)

VOtxStatistic returns statistics about text objects, depending on the value of flag. Valid flag values are defined in
VOstd.h. If flag is OBJECT_COUNT, returns the current number of text objects.

VOu (VOutil)
VOu Functions VO Routines

Utility routines for use with objects.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOu Functions
VOuAtInit Sets all attributes fields to EMPTY_FIELD.
VOuAttr Returns attributes structure from attribute-value

pairs.
VOuClearDgData Clears the data buffers of data group objects.
VOuDeleteDynamics Deletes dynamic objects from the drawing.
VOuDrListClear Clears the list of drawings retrieved so far.
VOuDrRetrieve Retrieves a drawing from a file.
VOuDyCoConvert Converts an object with pre-8.0 color dynamics

to post-8.0 dynamics.
VOuDySdConvert Converts an object with pre-8.0 subdrawing

dynamics to post-8.0 dynamics.
VOuGetInList Gets the list of objects in a viewport.
VOuGetMovePt Gets the move point for an object.
VOuHasColorDynamics Determines if the object has dynamic color.
VOuIsDynamic Determines if the object has dynamics.
VOuObGetNameSlot Gets the name from the name slot of an object.
VOuObMatchNameSlots Populates a deque with objects of a given type

whose name slots match a given name.
VOuObMove Moves an object.
VOuObSetNameSlot Sets a name in the name slot of an object.
VOuVpBound Gets the boundary of transformed viewport.
VOuVpEmpty Sets the viewport to indicate empty.
VOuVpObGet Gets bounding viewport for object.
VOuVpObscured Determines if a viewport is partially obscured.
VOuVpPtsGet Gets the bounding viewport for array of points.
VOuVpSort Sorts the viewport’s coordinates.
VOuVpUnion Adjusts one viewport to contain the other.
VOuVpVisible Determines if a viewport is visible.
VOuXfDoesFlip Determines if the transform flips the object.
VOuXfDrFit Creates a transformation for drawing in a

viewport.
VOuXfStretchCreate Creates a transformation to map one rectangle to

another.

VOuAtInit

 VOu Functions VO Routines

Sets all attributes fields to EMPTY_FIELD.

void
VOuAtInit (

ATTRIBUTES *attributes)

VOuAtInit sets all attribute fields to either EMPTY_FIELD or EMPTY_FLOAT_FIELD.

VOuAttr

 VOu Functions VO Routines

Returns attributes structure from attribute-value pairs.

ATTRIBUTES *
VOuAttr (

int attr1, <type> value1,
int attr2, <type> value2,
...,
V_END_OF_LIST)

VOuAttr returns a pointer to an internal attributes structure with fields that are set according to a variable length
argument list of attribute-value pairs terminated by V_END_OF_LIST. Each attribute parameter is a constant flag
representing the field of the attributes structure. The parameter following it contains the value of that field. Valid
attribute flags are:

FOREGROUND_COLOR TEXT_FONT
BACKGROUND_COLOR TEXT_FONTNAME
LINE_WIDTH TEXT_SIZE
LINE_TYPE TEXT_HEIGHT
FILL_STATUS TEXT_WIDTH
ARC_DIRECTION TEXT_DIRECTION
CURVE_TYPE TEXT_POSITION

TEXT_ANGLE
TEXT_SLANT
TEXT_CHARSPACE
TEXT_LINESPACE

VOuClearDgData

 VOu Functions VO Routines

Clears the data buffers of data group objects.

void
VOuClearDgData (

OBJECT object)

VOuClearDgData clears the data buffers associated with data group objects. object can be a data group object, a
deque object, or a drawing object. If object is a deque or drawing object, this routine traverses object and clears the
data buffers associated with all data group objects.

VOuDeleteDynamics

 VOu Functions VO Routines

Deletes dynamic objects from the drawing.

void
VOuDeleteDynamics (

OBJECT drawing)

VOuDeleteDynamics deletes all dynamic objects, such as data group objects, input objects, and dynamic control
objects, from the drawing. Threshold table objects and variable descriptor objects are replaced by their static
equivalents.

VOuDrListClear

 VOu Functions VO Routines

Clears the list of drawings retrieved so far.

void
VOuDrListClear (void)

VOuDrRetrieve

 VOu Functions VO Routines

Retrieves a drawing from a file.

OBJECT
VOuDrRetrieve (

ADDRESS filename)

VOuDrRetrieve returns a drawing by reading a saved view from the file, filename, stripping the data sources and
dynamics from it and returning the drawing object. This routine builds a list of the drawings that have been read in
and saves them. If a drawing has already been retrieved, this routine simply returns the corresponding entry from the
list. See also VOuDeleteDynamics.

VOuDyCoConvert

 VOu Functions VO Routines

Converts an object with pre-8.0 color dynamics to post-8.0 dynamics.

void
VOuDyCoConvert (

OBJECT color_object)

VOuDyCoConvert converts an object with pre-8.0 color dynamics to post-8.0 dynamics. VOuDyCoConvert creates a
dynamic control object that uses the foreground color attribute for dynamics and attaches this dynamic control
object to the color_object. See also TviConvertDynamics.

VOuDySdConvert

 VOu Functions VO Routines

Converts an object with pre-8.0 subdrawing dynamics to post-8.0 dynamics.

void
VOuDySdConvert (

OBJECT thresh_object,
OBJECT *sdobject_ptr)

VOuDySdConvert converts an object with pre-8.0 subdrawing dynamics to post-8.0 dynamics. Given the threshold
table object, thresh_object, and a pointer to a subdrawing object, sdobject_ptr, VOuDySdConvert creates a dynamic
control object that emulates subdrawing dynamics. See also TviConvertDynamics.

VOuGetInList

 VOu Functions VO Routines

Gets the list of objects in a viewport.

OBJECT
VOuGetInList (

OBJECT candidates,
OBJECT xform,
RECTANGLE *vp)

VOuGetInList creates a list containing the objects in a drawing or a deque, candidates, that might intersect a given
viewport, vp. The program applies a min-max test to the objects, comparing their xform-transformed bounding boxes
to the viewport. Any object that might be in the viewport is added to the list. Therefore, the routine eliminates all
objects that are definitely outside the viewport.

VOuGetMovePt

 VOu Functions VO Routines

Gets the move point for an object.

void
VOuGetMovePt (

OBJECT InObject,
DV_POINT *pt)

VOuGetMovePt gets the move point for an object or a deque of objects, InObject. Sets the parameter, pt, to the
world coordinates of the move point for InObject. The move point is the same as the move point seen in DV-Draw.

VOuHasColorDynamics

 VOu Functions VO Routines

Determines if the object has dynamic color.

BOOLPARAM
VOuHasColorDynamics (

OBJECT object)

VOuHasColorDynamics determines whether or not the object has pre-8.0 color dynamics. The routine determines
this by traversing the object’s subobjects looking for a dynamic color, which is a variable descriptor object of type
V_COLOR. Returns YES or NO.

VOuIsDynamic

 VOu Functions VO Routines

Determines if the object has dynamics.

BOOLPARAM
VOuIsDynamic (

OBJECT object)

VOuIsDynamic determines whether or not the object has dynamics. The following objects are considered dynamic:
input objects, data group objects, graphical objects with attached variable descriptor or dynamics control objects,
and threshold table objects. Returns YES or NO.

VOuObGetNameSlot

 VOu Functions VO Routines

Gets the name from the name slot of an object.

char *
VOuObGetNameSlot (

OBJECT object)

VOuObGetNameSlot returns the name from the internal name slot of an object. Currently the only object that uses an
internal name slot is the dynamic control object.

VOuObMatchNameSlots

 VOu Functions VO Routines

Populates a deque with objects of a given type whose name slots match a given name.

int
VOuObMatchNameSlots (

OBJECT start_obj,
int obj_type,
char *name,
OBJECT deque)

VOuObMatchNameSlots populates a deque with objects of a given type whose internal name slot matches a given
name. Currently the only object that uses an internal name slot is the dynamic control object. This routine starts
checking at start_obj and copies into deque any objects and subobjects that match obj_type and name. If name is
NULL, all objects of the given type are put into the deque. Once the deque is populated, use VOdqGetEntry or a
traversal routine such as TobForEachSubobject to filter the objects. This routine provides a means of obtaining a
named dynamic control object. See the example below. Returns the number of objects found.

VOuObMove

 VOu Functions VO Routines

Moves an object.

void
VOuObMove (

OBJECT object,
int flag,
int x,
int y)

VOuObMove moves an object in world coordinates by a relative amount (RELATIVE_MOVE) or to an absolute
position (ABSOLUTE_MOVE), depending on the flag value. When an object is moved to an absolute position, the
object is centered on the absolute point.

VOuObSetNameSlot

 VOu Functions VO Routines

Sets a name in the name slot of an object.

void
VOuObSetNameSlot (

OBJECT object,
char *name)

VOuObSetNameSlot sets the name in the name slot of an object to name. This routine provides a means of setting
the internal name slot for a dynamic control object. Use this routine to change the name of the dynamic control
object that was named in DV-Draw or to name a dynamic control object that you created using VOdyCreate.

VOuVpBound

 VOu Functions VO Routines

Gets the boundary of transformed viewport.

void
VOuVpBound (

RECTANGLE *vp,
OBJECT xform,
RECTANGLE *boundvp)

VOuVpBound gets the smallest viewport containing the viewport, vp, transformed by the transformation object,
xform, which can include a rotation of the viewport.

VOuVpEmpty

 VOu Functions VO Routines

Sets the viewport to indicate empty.

void
VOuVpEmpty (

RECTANGLE *vp)

VOuVpEmpty sets the viewport, vp, to indicate empty. Sets the upper right of the viewport to the minimum
coordinate values and the lower left coordinates to the maximum coordinate values. This lets VOuVpUnion merge
viewports easily.

VOuVpObGet

 VOu Functions VO Routines

Gets bounding viewport for object.

void
VOuVpObGet (

OBJECT object,
OBJECT xform,
RECTANGLE *vp)

VOuVpObGet gets the bounding viewport, vp, for the object when it has been transformed by xform. This is
calculated from the bounding box of the object.

VOuVpObscured

 VOu Functions VO Routines

Determines if a viewport is partially obscured.

BOOLPARAM
VOuVpObscured (

RECTANGLE *vp,
RECTANGLE **obsvps)

VOuVpObscured determines whether or not any part of the viewport, vp, is obscured by any viewport in the
specified NULL-terminated array of obscuring viewports, obsvps. Returns YES or NO.

VOuVpPtsGet

 VOu Functions VO Routines

Gets the bounding viewport for the array of points.

void
VOuVpPtsGet (

DV_POINT *pts,
int numpts,
RECTANGLE *vp)

VOuVpSort

 VOu Functions VO Routines

Sorts the viewport’s coordinates.

void
VOuVpSort (

RECTANGLE *vp)

VOuVpSort sorts coordinates of the viewport, vp. This ensures that the lower left point (ll) is really lower and to the
left of the upper right point (ur).

VOuVpUnion

 VOu Functions VO Routines

Adjusts one viewport to contain the other.

void
VOuVpUnion (

RECTANGLE *vp1,
RECTANGLE *vp2)

VOuVpUnion adjusts the coordinates of the first viewport, vp1, to contain the second viewport, vp2.

VOuVpVisible

 VOu Functions VO Routines

Determines if a viewport is visible.

BOOLPARAM
VOuVpVisible (

RECTANGLE *testvp,
RECTANGLE *invp,
RECTANGLE **obsvps)

VOuVpVisible determines whether a portion of the viewport, testvp, is visible, where it is to be clipped into the
viewport, invp, and where it is to be clipped outside the NULL-terminated viewport array, obsvps. Note that the input
viewport, testvp, is modified. Returns YES or NO.

VOuXfDoesFlip

 VOu Functions VO Routines

Determines if the transform flips the object.

BOOLPARAM
VOuXfDoesFlip (

OBJECT xform)

VOuXfDoesFlip determines if xform changes the object from a right-hand coordinate system to a left-hand
coordinate system. Returns YES if the object would be flipped by the transformation. Otherwise returns NO.

VOuXfDrFit

 VOu Functions VO Routines

Creates a transformation for drawing in a viewport.

OBJECT
VOuXfDrFit (

RECTANGLE *vp,
BOOLPARAM all_visible)

VOuXfDrFit calculates the transformation that makes a drawing fit into a viewport. In general, there are two ways
for the drawing to fit, since the aspect ratio of the drawing is 1:1 and the aspect ratio of viewport is usually not 1:1.
The two cases are illustrated below. YES guarantees that the whole drawing is visible; NO guarantees that off-
drawing space is not visible. all_visible should be set as desired.

VOuXfStretchCreate

 VOu Functions VO Routines

Creates a transformation to map one rectangle to another.

OBJECT
VOuXfStretchCreate (

RECTANGLE r1,
RECTANGLE r2)

VOuXfStretchCreate calculates the transformation that maps one rectangle to another, stretching the x or y
coordinate as necessary to make it fit. Note that this transformation does not preserve aspect ratio, so when the
control points of certain objects get transformed, they may change their appearance with respect to other objects in
the drawing. In particular, strange transformations will occur with arcs and circles. The transformation maps r1 to
r2.

Examples
The following code fragment shows how to obtain a named dynamic control object from a view. The dynamic
control object’s name is “robot1_dynamics” and the view’s filename is “robot.v.”

VIEW view;
OBJECT drawing, robot1_deque, robot1_dyn_object;

view = TviLoad ("robot.v");
drawing = TviGetDrawing (view);
robot1_deque = VOdqCreate (10);
VOuObMatchNameSlots (drawing, OT_DYNAMIC, "robot1_dynamics", robot1_deque);

/* Since "robot1_dynamics" is a unique name, only one object is in the deque */
robot1_dyn_object = VOdqGetEntry (robot1_deque, 1);

VOvd (VOvariabledescriptor)
VOvd Functions VO Routines

Manages variable descriptor objects (vd). Variable descriptor objects maintain lower-level data structures called
variable descriptors (vdp). Variable descriptors describe variables that control the dynamic aspects of the display.
See the VP and VG routines.

Variable descriptor objects should not share variable descriptors. If several connections to the same data are
required, multiple variable descriptors should be created.

A variable descriptor object only controls one type of attribute. Variable descriptor objects return one of the
following types of dynamic data:

Normalized datum Representing the current data value.
Text Representing the current text value.
Color object Maintained for compatibility with DataViews releases prior to version 8.0, but is

considered obsolete. A variable descriptor object of type COLOR is used as a color
attribute for graphical objects with pre-8.0 color dynamics.

Variable descriptor objects supply normalized data to threshold table objects or dynamic control objects. See the
VOdy and VOtt modules.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOvd Functions
VOvdChanged Determines if the value changed a noticeable

amount.
VOvdClone See VOobClone.
VOvdCreate Creates and returns a variable descriptor object.
VOvdDereference See VOobDereference.
VOvdDvGet Gets the dynamic data value of a variable descriptor

object.
VOvdGetVdp Returns a pointer to the variable descriptor

structure.
VOvdRefCount See VOobRefCount.
VOvdReference See VOobReference.
VOvdReset Resets the variable descriptor object to an initial

state.
VOvdStatistic Returns statistics about variable descriptors.
VOvdSvGet Gets the static value of a variable descriptor object.
VOvdSvPut Sets the static value of a variable descriptor object.
VOvdSwitch Changes the object’s variable descriptor structure.
VOvdType Returns variable type of the variable descriptor

object.
VOvdValid See VOobValid.
A VOvd routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOvd routine to save the overhead of an additional routine call.

VOvdChanged

 VOvd Functions VO Routines

Determines if the value changed a noticeable amount.

BOOLPARAM
VOvdChanged (

OBJECT vd)

VOvdChanged determines whether the value of the variable descriptor object, vd, has changed. Returns YES or NO.

VOvdCreate

 VOvd Functions VO Routines

Creates and returns a variable descriptor object.

OBJECT
VOvdCreate (

ADDRESS var,
int type,
DATUM statval)

VOvdCreate creates and returns a variable descriptor object. var specifies either an existing data source variable or
an existing variable descriptor structure, VARDESC, to which the variable descriptor object is attached. If this
parameter contains a data source variable, a variable descriptor structure is created, through which the data source
variable is attached. If var is a variable descriptor, it must not already belong to another object. If the parameter type
is defined to be NUMBER, a numeric variable descriptor object, var, is created. If the parameter type is defined to be
DV_TEXT, a text variable descriptor object, var, is created. The COLOR type flag is obsolete but maintained for
compatibility with previous releases. The default value, statval, is obsolete but maintained for compatibility with
previous releases. It is used only for pre-8.0 dynamics when the data described by the variable descriptor object is
unavailable or inappropriate. If type is NUMBER, statval should be an integer number within the normalized range
[0, 32K]. If type is DV_TEXT, statval should be a text string. If type is COLOR, statval should be a color object.

VOvdDvGet

 VOvd Functions VO Routines

Returns the current value of the dynamic data defined by a variable descriptor object.

DATUM
VOvdDvGet (

OBJECT vd)

This routine only works on pre-8.0 dynamics.

VOvdGetVdp

 VOvd Functions VO Routines

Returns a pointer to the variable descriptor structure.

ADDRESS
VOvdGetVdp (

OBJECT vd)

VOvdGetVdp returns the address of the variable descriptor structure belonging to vd. See also the VP and VG
routines.

VOvdReset

 VOvd Functions VO Routines

Resets the variable descriptor object to an initial state.

void
VOvdReset (

OBJECT vd)

VOvdStatistic

 VOvd Functions VO Routines

Returns statistics about variable descriptors.

LONG
VOvdStatistic (

int flag)

VOvdStatistic returns statistics about variable descriptor objects, depending on the value of flag. Valid flag values
are defined in VOstd.h. If flag is OBJECT_COUNT, returns the current number of variable descriptor objects.

VOvdSvGet

 VOvd Functions VO Routines

Gets the default or static value of a variable descriptor object.

DATUM
VOvdSvGet (

OBJECT vd)

This routine only works on pre-8.0 dynamics.

VOvdSvPut

 VOvd Functions VO Routines

Sets the static value of a variable descriptor object to the value, statval.

void
VOvdSvPut (

OBJECT vd,
DATUM statval)

This routine only works on pre-8.0 dynamics. You cannot use this routine to specify an outgoing value when the
incoming data has an undefined value. If the incoming data has an undefined value, the first value of the threshold
table is used.

VOvdSwitch

 VOvd Functions VO Routines

Changes the object’s variable descriptor structure.

void
VOvdSwitch (

OBJECT vd,
VARDESC vdp)

VOvdSwitch replaces the variable descriptor used by vd with a new variable descriptor, vdp, and destroys the old
one. The new variable descriptor must not already belong to another object.

VOvdType

 VOvd Functions VO Routines

Returns variable type of the variable descriptor object.

int
VOvdType (

OBJECT vd)

VOvdType returns the type of the variable descriptor object, vd. The type can be:

NUMBER for a numerical variable descriptor object
DV_TEXT for a text variable descriptor object
COLOR for a color variable descriptor object. Obsolete, but maintained for compatibility with previous

releases

Examples
The following code fragment creates a variable descriptor object and sets its range:

OBJECT vd;
VARDESC vdp;
int defaultnumber;

defaultnumber = 0;
vd = VOvdCreate (dsv, NUMBER, (DATUM) defaultnumber)
vdp = VOvdGetVdp (vd);
VPvd_drange (vdp, 0.0, 1.0);

VOvt (VOvectortext)
VOvt Functions VO Routines

Manages vector text objects (vt). A vector text object is similar to an ordinary text object, except that it is drawn in
world coordinate vectors, which are mapped to screen coordinates by the world-to-screen transform. Vector text
objects can therefore be panned or zoomed without changing their relative size and position in the drawing. They
can also be scaled in either dimension, rotated or slanted, and a variety of fonts are available, based on the Hershey
fonts.

Vector text attributes are direction, position, width, height, angle, slant, character spacing, line spacing, foreground
color, and fontname. The text object is attached to the drawing at an anchor point which can be at one of nine
positions in the same manner as with VOtx text objects.

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOvt Functions
VOvtAtGet See VOobAtGet.
VOvtAtSet See VOobAtSet.
VOvtBox See VOobBox.
VOvtClone See VOobClone.
VOvtCreate Creates and returns a vector text object.
VOvtDereference See VOobDereference.
VOvtFitRect Finds dimensions of vector text to fit a

rectangle.
VOvtGetBound Gets the vector text boundary vectors.
VOvtGetString Gets the string value of the vector text object.
VOvtIntersect See VOobIntersect.
VOvtPtGet See VOobPtGet.
VOvtPtSet See VOobPtSet.
VOvtRefCount See VOobRefCount.
VOvtReference See VOobReference.
VOvtSetString Sets new string value for the vector text object.
VOvtStatistic Returns statistics about vector text objects.
VOvtTraverse See VOobTraverse.
VOvtValid See VOobValid.
VOvtXfBox See VOobXfBox.
VOvtXformBox See VOobXformBox.
A VOvt routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOvt routine to save the overhead of an additional routine call.

VOvtCreate

 VOvt Functions VO Routines

Creates and returns a vector text object.

OBJECT
VOvtCreate (

char *string,
OBJECT anchor_pt,
ATTRIBUTES *attributes)

VOvtCreate creates and returns a vector text object. string is a NULL-terminated character string containing the text
content of the object. The anchor point, anchor_pt, is the point object that defines where the text string appears on
the screen. Valid attributes field flags are:

TEXT_DIRECTION TEXT_POSITION
TEXT_WIDTH TEXT_SLANT
TEXT_HEIGHT TEXT_ANGLE
TEXT_CHARSPACE TEXT_LINESPACE
TEXT_FONTNAME FOREGROUND_COLOR

If attributes is NULL, default values are used.

VOvtFitRect

 VOvt Functions VO Routines

Finds dimensions of vector text to fit a rectangle.

void
VOvtFitRect (

OBJECT vtext,
RECTANGLE *wvp,
float *width,
float *height,
DV_POINT *wpt_anchor)

VOvtFitRect gives the height and width attribute values and anchor point position, wpt_anchor, required to make the
vector text object, vtext, fit exactly within the specified boundary viewport rectangle, wvp. wpt_anchor is specified
in world coordinates. This routine does not change the vector text object.

VOvtGetBound

 VOvt Functions VO Routines

Gets the vector text boundary vectors.

void
VOvtGetBound (

OBJECT vtext,
int *wx,
int *wy,
int *hx,
int *hy)

VOvtGetBound returns four world coordinate values representing the boundary of the vector text object on the
screen. This boundary can be a rectangle of any shape, size, and orientation and is defined by two vectors extending
from the lower left corner of the text to the upper left corner (hx,hy), and from the lower left corner to the lower right
corner (wx,wy). This yields a tighter boundary than the VOobBox routine which gives the minimum horizontal and
vertical extents.

VOvtGetString

 VOvt Functions VO Routines

Gets the string value of the vector text object.

char *
VOvtGetString (

OBJECT vtext)

VOvtGetString returns a pointer to the string associated with the vector text object. This is a pointer to an internal
data structure which should not be modified.

VOvtSetString

 VOvt Functions VO Routines

Sets new string value for the vector text object.

void
VOvtSetString (

OBJECT vtext,
char *newstring)

VOvtSetString sets a new string value, newstring, for the vector text object. If the new string is shorter than the old
string, it is simply copied into the old string’s buffer. Otherwise, storage is reallocated to allow for the increased
length.

VOvtStatistic

 VOvt Functions VO Routines

Returns statistics about vector text objects.

LONG
VOvtStatistic (

int flag)

VOvtStatistic returns statistics about vector text objects, depending on the value of flag. Valid flag values are defined
in VOstd.h. If flag is OBJECT_COUNT, returns the current number of vector text objects.

VOxf (VOxform)
VOxf Functions VO Routines

Manages transform objects (xf). Transform objects map two-dimensional points from one coordinate system to
another. Matrices post-multiply the points: [x y 1][mat].

VOob VOdg VOel VOin VOno VOre VOsf VOu
VOar VOdq VOg VOit VOpm VOru VOsk VOvd
VOci VOdr VOic VOln VOpt VOsc VOtt VOvt
VOco VOdy VOim VOlo VOpy VOsd VOtx VOxf
VOdb
g

VOed

VOxf Functions
VOxfCatCreate Creates a concatenation of two transform objects.
VOxfDereference See VOobDereference.
VOxfDpPoint Transforms a point giving double coordinates.
VOxfInvCreate Creates the inverse of a transform object.
VOxfMatCreate Creates a general matrix transform object.
VOxfMatGet Gets the 3x3 matrix for the XFORM object.
VOxfPoint Transforms a point according to the transform

object.
VOxfRefCount See VOobRefCount.
VOxfReference See VOobReference.
VOxfRotCreate Creates a rotation matrix transform object.
VOxfScale Gets the scale factor associated with the transform.
VOxfStatistic Returns statistics about transforms.
VOxfStCreate Creates a scale-translate transform object.
VOxfSxytCreate Creates an x,y scale-translate transform object.
VOxfValid See VOobValid.
A VOxf routine that refers to a VOob routine performs the same function and uses the same parameters as the VOob routine
indicated. You can use the VOxf routine to save the overhead of an additional routine call.

VOxfCatCreate

 VOxf Functions VO Routines

Creates a concatenation of two transform objects.

OBJECT
VOxfCatCreate (

OBJECT xform,
OBJECT xform2)

VOxfCatCreate creates and returns a transform that is the concatenation of the two specified transform objects.

VOxfDpPoint

 VOxf Functions VO Routines

Transforms a point giving double coordinates.

void
VOxfDpPoint (

OBJECT xform,
double *x,
double *y)

VOxfDpPoint transforms the point with coordinates (x,y) according to the transform object. Computes the point
exactly, setting x and y to the double precision result.

VOxfInvCreate

 VOxf Functions VO Routines

Creates the inverse of a transform object.

OBJECT
VOxfInvCreate (

OBJECT xform)

VOxfInvCreate creates and returns the inverse of xform. The inverse of the scale-translate transformation is:

where s is the scale factor and (x,y) is the point offset.

VOxfMatCreate

 VOxf Functions VO Routines

Creates a general matrix transform object.

OBJECT
VOxfMatCreate (

float matrix[3][3])

VOxfMatCreate creates and returns a general matrix transform object. The matrix is a 3x3 homogeneous
transformation matrix for two-dimensional coordinates. This type of transformation can represent translation,
rotation, shear, and scaling. The general xform is arranged as follows:

VOxfMatGet

 VOxf Functions VO Routines

Gets the 3x3 matrix for the XFORM object.

void
VOxfMatGet (

OBJECT xform,
float outmat[3][3])

VOxfMatGet gets the 3x3 matrix corresponding to xform. This matrix corresponds to a homogeneous transformation
of a two-dimensional point. For an explanation of coordinate transformations, refer to any computer graphics
textbook.

VOxfPoint

 VOxf Functions VO Routines

Transforms a point according to the transform object.

int
VOxfPoint (

OBJECT xform,
DV_POINT *pt)

VOxfPoint transforms the point, pt, according to the transform object, xform. VOxfPoint transforms point data
structures, not point objects. These point structures are the same as those used by the GR routines. Returns
DV_FAILURE if the transformed point is out of range, that is, if it won’t fit in a LONG. Otherwise returns
DV_SUCCESS.

VOxfRotCreate

 VOxf Functions VO Routines

Creates a rotation matrix transform object.

OBJECT
VOxfRotCreate (

double angle,
LONG x,
LONG y)

VOxfRotCreate creates and returns a rotation matrix transform object. The angle is in degrees. (x,y) is the center of
rotation.

VOxfScale

 VOxf Functions VO Routines

Returns the scale factor associated with the transform.

double
VOxfScale (

OBJECT xform)

VOxfStatistic

 VOxf Functions VO Routines

Returns statistics about transforms.

LONG
VOxfStatistic (

int flag)

VOxfStatistic returns statistics about transform objects, depending on the value of flag. Valid flag values are defined
in VOstd.h. If flag is OBJECT_COUNT, returns the current number of transform objects.

VOxfStCreate

 VOxf Functions VO Routines

Creates a scale-translate transform object.

OBJECT
VOxfStCreate (

double scale_factor,
LONG x_offset,
LONG y_offset)

VOxfStCreate creates and returns a scale-translate transform object. This generates a matrix of the following form:

where s is scale_factor, x is x_offset, and y is y_offset. A negative scale_factor makes the transform flip the object
on which it operates.

VOxfSxytCreate

 VOxf Functions VO Routines

Creates an x,y scale-translate transform object.

OBJECT
VOxfSxytCreate (

double x_scale,
double y_scale,
LONG x_offset,
LONG y_offset)

VOxfSxytCreate creates an (x,y) scale-translate transform object. This is a transform where the x and y scale factors
are different. A negative scale_factor makes the transform flip the object on which it operates.

VUer Routines
Event handling routines.

VUer Modules
All modules in the VUer layer require the following include file:

#include "dvinteract.h"
#include "VUerfundecl.h"

VUerhandler Routines that pass events to the event handler, then trigger
appropriate service routines according to event requests.

VUerpost Routines that post, activate, and deactivate event requests and service
result requests with the event handler.

VUerpost
VUerpost Functions VUer Routines

Routines that post, activate, and deactivate event requests and service result requests with the event handler. They
are called implicitly by the input objects through their interaction handlers, but they can also be called directly by
the application programmer. Application programs using the VUerPost routines must include the header file
dvinteract.h.

See Also
VUerHandleLocEvent for the order in which event requests and service result requests are serviced.

VUer VUerhandler VUerpost
VUerpost Functions
VUerActivate Activates an event request.
VUerActivateClient Activates all event requests of a particular

client.
VUerBoundaryEventDpPo

st
Same as VUerBoundaryEventPost, plus

support for clipping.
VUerBoundaryEventPost Posts a request for an event.
VUerCatchAllEventPost Posts an event request for all events.
VUerClearAll Clears all event requests of a particular

client.
VUerClearAllForMonClient Clears all service result requests posted on

a monitored client.
VUerDeactivate Deactivates an event request.
VUerDeactivateClient Deactivates all event requests of a client.
VUerIsActive Determines if an event request is active.
VUerObjectEdgeDpPost Same as VUerObjectEdgePost, plus

support for clipping.
VUerObjectEdgePost Posts an object event request.
VUerRectEdgeDpPost Same as VUerRectEdgePost, plus

support for clipping.
VUerRectEdgePost Posts a rectangle event request.
VUerServiceResultPost Posts a service result request.
VUerWinEventPost Posts a request for a window event.

VUerActivate

 VUerpost Functions VUer Routines

Activates an event request.

void
VUerActivate (

EVENT_REQUEST EventRequest)

VUerActivate activates an event request. When event requests are posted, they become active. Therefore, this routine
is used to activate event requests after they have been deactivated by a call to VUerDeactivate.

VUerActivateClient

 VUerpost Functions VUer Routines

Activates all event requests of a particular client.

void
VUerActivateClient (

OBJECT Client)

VUerActivateClient activates all event requests associated with a particular client id, Client.

VUerBoundaryEventDpPost

 VUerpost Functions VUer Routines

Same as VUerBoundaryEventPost, plus support for clipping.

EVENT_REQUEST
VUerBoundaryEventDpPost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
int Label,
ULONG ErInterpretation,
...,

Additional Parameters:
If ErInterpretation is VUER_SE_EVENT:
ULONG PickEventType,
ULONG *PickSyms,
DRAWPORT drawport)

If ErInterpretation is VUER_BRE_EVENT:
ULONG PickEventType,
ULONG *PickSyms,
RECTANGLE *BndingRect,
BOOLPARAM InOut,
DRAWPORT drawport,
RECTANGLE *cliprect)

If ErInterpretation is VUER_DOE_EVENT:
ULONG PickEventType,
ULONG *PickSyms,
OBJECT EdgeObj,
OBJECT XformObj,
BOOLPARAM InOut,
DRAWPORT drawport,
RECTANGLE *cliprect)

If ErInterpretation is VUER_POS_EVENT:
RECTANGLE *BndingRect,
BOOLPARAM InOut,
DRAWPORT drawport,
RECTANGLE *cliprect)

If ErInterpretation is VUER_OPOS_EVENT:
OBJECT EdgeObj,
OBJECT XformObj,
BOOLPARAM InOut,
DRAWPORT drawport,
RECTANGLE *cliprect)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerBoundaryEventDpPost posts an event request for five types of event interpretations. This routine has a variable
length list of parameters, depending on the event request interpretation, which you pass explicitly in the
ErInterpretation parameter. For descriptions of the parameters see VUerBoundaryEventPost. The additional
parameters required for each of the ErInterpretation flags are:

drawport: the drawport for which you are making the event request. This parameter can be used to distinguish
between overlapping drawports.

cliprect: the clipped rectangle for which you are making the event request. This parameter should be NULL
when you want the event request applied to the entire object or region. This parameter should be specified
when you want the event request applied only to the clipped part of the object or region. This parameter is
not used when ErInterpretation is VUER_SE_EVENT, and is ignored when InOut is V_OUTSIDE.

VUerBoundaryEventPost

 VUerpost Functions VUer Routines

Posts a request for an event.

EVENT_REQUEST
VUerBoundaryEventPost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
int Label,
ULONG ErInterpretation,
...,

Additional Parameters:
If ErInterpretation is VUER_SE_EVENT:
ULONG PickEventType,
ULONG *PickSyms)

If ErInterpretation is VUER_BRE_EVENT:
ULONG PickEventType,
ULONG *PickSyms,
RECTANGLE *BndingRect,
BOOLPARAM InOut)

If ErInterpretation is VUER_DOE_EVENT:
ULONG PickEventType,
ULONG *PickSyms,
OBJECT EdgeObj,
OBJECT XformObj,
BOOLPARAM InOut)

If ErInterpretation is VUER_POS_EVENT:
RECTANGLE *BndingRect,
BOOLPARAM InOut)

If ErInterpretation is VUER_OPOS_EVENT:
OBJECT EdgeObj,
OBJECT XformObj,
BOOLPARAM InOut)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerBoundaryEventPost posts an event request for five types of event interpretations. This routine should be used
when drawport clipping is not an issue, such as when you have only one drawport on your screen. For situations
with multiple drawports, use VUerBoundaryEventDpPost.

This routine has a variable length list of parameters depending on the event request interpretation, which you pass
explicitly in the ErInterpretation parameter. The parameters that are common are:

Client: client id making the request.

fcn: pointer to the service routine called when the request is satisfied.
Args: argument structure passed to the service routine when it is called.
ArgSize: the size in bytes of the Args structure. If Args is non-NULL and ArgSize is non-zero, the event handler

makes a copy of the Args structure, which it frees when the event request is cleared. If Args is non-NULL
and ArgSize is zero, the event handler keeps the pointer to the structure without making a copy. In this case,
the structure is not freed when the event request is cleared.

Label: a label given by the programmer to identify this event request.
ErInterpretation: a flag indicating how the event request should be interpreted. The additional parameters in the

variable length argument list, which depend on the event request interpretation, are listed below. The valid
flags are:

VUER_SE_EVENT A request for a key or button event anywhere on the screen, also
called a simple edge event. Requires PickEventType and
PickSyms.

VUER_BRE_EVENT A request for a key or button event inside or outside a rectangle
specified in screen coordinates, also called a boundary edge
event. Requires PickEventType, PickSyms, BndingRect, and
InOut.

VUER_DOE_EVENT A request for a key or button event inside or outside a graphical
object, also called a object edge event. Requires PickEventType,
PickSyms, EdgeObj, XformObj, and InOut.

VUER_POS_EVENT A request for a motion or position event inside or outside a rectangle
specified in screen coordinates, also called a position event.
Requires BndingRect and InOut.

VUER_OPOS_EVENT A request for a motion or position event inside or outside a graphical
object, also called an object position event. Requires EdgeObj,
XformObj, and InOut.

The additional parameters in the variable length declaration list are:

PickEventType: the event type. The valid event type flags are V_KEYPRESS, V_KEYRELEASE,
V_BUTTONPRESS, and V_BUTTONRELEASE. The event type of the location object is compared to this
flag to determine if it matches the request. You can only enter one event type flag. To post for more than
one event type, call this routine again with another event type and the same service routine.The definitions
of these flags are located in dvGR.h.

PickSyms: an array of flags representing keyboard or mouse picks. The last item in the array must be zero. The
key symbol or button of the location object is compared to this array to determine if it matches the request.
Use 1, 2, or 3 for mouse button 1, 2, or 3. The definitions of the key symbol flags are located in
GRkeysymdef.h.

BndingRect: a pointer to a rectangle specified in screen coordinates. The coordinates of the location object are
compared to this rectangle to determine if the event occurred inside or outside this region.

InOut: a flag that specifies whether the event request should be interpreted as an inside event request or an
outside event request with respect to the specified rectangle or graphical object. Valid flags are V_INSIDE
and V_OUTSIDE.

EdgeObj: the graphical object. The coordinates of the location object is compared to this object to determine if
the event occurred inside or outside the object. For objects with a fill status of EDGE, the location object is
outside the object unless it directly intersects the edge of the object. The object must be visible for the
request to be serviced.

XformObj: the transform object required for converting the graphical object’s world coordinates to screen
coordinates. You can get this parameter by calling TdpGetXform with the DR_TO_SCREEN flag.

The event request interpretation and the InOut flag determine the order in which VUerHandleLocEvent or
VUerHandler service the event requests. Simple edge and inside event requests are posted to one list, and outside
event requests are posted to a second list. The most recently posted matching simple edge or inside event request is
the first and only event request serviced. If no requests from the first list are serviced, all matching outside event

requests are serviced, starting with the most recently posted.

The service routine is user-defined and should have the following form:
fcn (Client, Request, Label, Loc, Args);

where Client, Label, and Args are passed from the posting routine’s parameters, Request is the posting routine’s
return value, and Loc is the location object passed to the event handler that satisfied the event request. The service
routine must return a user defined value or one of four service result flags, which are listed in the description of
VUerServiceResultPost.

VUerCatchAllEventPost

 VUerpost Functions VUer Routines

Posts an event request for all events.

EVENT_REQUEST
VUerCatchAllEventPost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
int Label)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerCatchAllEventPost posts an event request to catch any event. This routine can be used to request any event, but
is particularly useful for requesting events that do not fit into any of the categories covered by the posting routines
VUerBoundaryEventPost, VUerObjectEdgePost, VUerRectEdgePost, or VUerWinEventPost. Since this
posting routine does not contain parameters for sorting events into types, you must handle those tasks in the service
routine.

Client: the client id making the request.
fcn: pointer to the service routine called when the request is satisfied, i. e. when any event is received that does

not fulfill any of the other posted requests.You can specify how to interpret the events and what actions to
take in this routine.

Args: the argument structure passed to the service routine.
ArgSize: the size in bytes of the Args structure. If Args is non-NULL and ArgSize is non-zero, the event handler

makes a copy of the Args structure, which it frees when the event request is cleared. If Args is non-NULL
and ArgSize is zero, the event handler keeps the pointer to the structure without making a copy. In this case,
the structure is not freed when the event request is cleared.

Label: a label given by the programmer to identify this event request.

The service routine is user-defined and should have the following form:
fcn (Client, Request, Label, Loc, Args);

where Client, Label, and Args are passed from the posting routine’s parameters, Request is the posting routine’s
return value, and Loc is the location object passed to the event handler that satisfied the event request. The service
routine must return a user defined value or one of four service result flags, which are listed in the description of
VUerServiceResultPost.

VUerClearAll

 VUerpost Functions VUer Routines

Clears all event requests of a particular client.

void
VUerClearAll (

OBJECT Client)

VUerClearAll removes all events requests with the specified client id, Client, from the event handler.

VUerClearAllForMonClient

 VUerpost Functions VUer Routines

Clears all service result requests posted on a monitored client.

void
VUerClearAllForMonClient (

OBJECT MonitoredClient)

VUerClearAllForMonClient clears all service result requests that specify a particular monitored client, regardless of
which client posted the request. This routine is similar to VUerClearAll, but acts based on the monitored client
instead of the client.

VUerDeactivate

 VUerpost Functions VUer Routines

Deactivates an event request.

void
VUerDeactivate (

EVENT_REQUEST EventRequest)

VUerDeactivate deactivates an event request. This lets an input object deactivate specific event requests for a
specific time period. Event requests can be reactivated using VUerActivate.

VUerDeactivateClient

 VUerpost Functions VUer Routines

Deactivates all event requests of a client.

void
VUerDeactivateClient (

OBJECT Client)

VUerDeactivateClient deactivates all event requests associated with the client id, Client. The event handler then
ignores the event requests until VUerActivateClient iscalled.

VUerIsActive

 VUerpost Functions VUer Routines

Determines if an event request is active.

BOOLPARAM
VUerIsActive (

EVENT_REQUEST erp)

VUerIsActive determines if an event request is active. Event requests are changed by their posting, VUerActivate
or VUerDeactivate. Returns YES or NO.

VUerObjectEdgeDpPost

 VUerpost Functions VUer Routines

Same as VUerObjectEdgePost, plus support for clipping.

EVENT_REQUEST
VUerObjectEdgeDpPost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
OBJECT EdgeObject,
OBJECT XformObject,
BOOLPARAM InOut,
char *KeyStr,
int Label,
DRAWPORT drawport,
RECTANGLE *cliprect)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerObjectEdgeDpPost posts an event request for object position and object edge events. It requires the same
arguments as VUerObjectEdgePost plus the following arguments:

drawport: the drawport for which you are making the event request. This parameter can be used to distinguish
between overlapping drawports.

cliprect: the clipped rectangle for which you are making the event request. This parameter should be NULL
when you want the event request applied to the entire object or region. This parameter should be specified
when you want the event request applied only to the clipped part of the object or region. This parameter is
ignored when InOut is V_OUTSIDE.

VUerObjectEdgePost

 VUerpost Functions VUer Routines

Posts an object event request.

EVENT_REQUEST
VUerObjectEdgePost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
OBJECT EdgeObject,
OBJECT XformObject,
BOOLPARAM InOut,
char *KeyStr,
int Label)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerObjectEdgePost posts an event request for object position and object edge events. This routine should be used
when drawport clipping is not an issue, such as when you have only one drawport on your screen. For situations
with multiple drawports, use VUerObjectEdgeDpPost. It requires the following arguments:

Client: the client id making the request.
fcn: pointer to the service routine called when the request is satisfied.
Args: argument structure passed to the service routine when it is called.
ArgSize: the size in bytes of the Args structure. If Args is non-NULL and ArgSize is non-zero, the event handler

makes a copy of the Args structure, which it frees when the event request is cleared. If Args is non-NULL
and ArgSize is zero, the event handler keeps the pointer to the structure without making a copy. In this case,
the structure is not freed when the event request is cleared.

EdgeObject: the graphical object. The coordinates of the location object is compared to this object to determine
if the event occurred inside or outside the object. For objects with a fill status of EDGE, the location object
is outside the object unless it directly intersects the edge of the object. The object must be visible for the
request to be serviced.

XformObject: the transform object required for converting the graphical object’s world coordinates to screen
coordinates. You can get this parameter by calling TdpGetXform withthe DR_TO_SCREEN flag.

InOut: a flag that specifies whether the event request should be interpreted as an inside event request or an
outside event request. V_INSIDE indicates an inside event request, satisfied when the locator is inside the
object; V_OUTSIDE indicates an outside event request, satisfied when the locator is outside the object.

KeyStr: a NULL-terminated string containing the keys that can be pressed to satisfy the event request. A zero-
length string means that any key is valid. When this parameter is NULL, the event request is interpreted
implicitly as an object position event request, VUER_OPOS_EVENT. When the parameter is not NULL, the
request is interpreted as a object edge event request, VUER_DOE_EVENT.

Label: a label given by the programmer to identify this event request.

The service routine is user-defined and should have the following form:
fcn (Client, Request, Label, Loc, Args);

where Client, Label, and Args are passed from the posting routine’s parameters, Request is the posting routine’s

return value, and Loc is the location object passed to the event handler that satisfied the event request. The service
routine must return a user defined value or one of four service result flags, which are listed in the description of
VUerServiceResultPost.

VUerRectEdgeDpPost

 VUerpost Functions VUer Routines

Same as VUerRectEdgePost, plus support for clipping.

EVENT_REQUEST
VUerRectEdgeDpPost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
RECTANGLE *BndingRect,
BOOLPARAM InOut,
char *KeyStr,
int Label,
DRAWPORT drawport,
RECTANGLE *cliprect)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerRectEdgeDpPost posts an event request for simple edge, boundary edge, or position events. It requires the
arguments required by VUerRectEdgePost, plus the following arguments:

drawport: the drawport for which you are making the event request. This parameter can be used to distinguish
between overlapping drawports.

cliprect: the clipped rectangle for which you are making the event request. This parameter should be NULL
when you want the event request applied to the entire object or region. This parameter should be specified
when you want the event request applied only to the clipped part of the object or region. This parameter is
ignored when InOut is V_OUTSIDE.

VUerRectEdgePost

 VUerpost Functions VUer Routines

Posts a rectangle event request.

EVENT_REQUEST
VUerRectEdgePost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
RECTANGLE *BndingRect,
BOOLPARAM InOut,
char *KeyStr,
int Label)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerRectEdgePost posts an event request for simple edge, boundary edge, or position events. This routine should be
used when drawport clipping is not an issue, such as when you have only one drawport on your screen. For
situations with multiple drawports, use VUerRectEdgeDpPost. It requires the following arguments:

Client: the client id making the request.
fcn: pointer to the service routine called when the request is satisfied.
Args: the argument structure passed to the service routine.
ArgSize: the size in bytes of the Args structure. If Args is non-NULL and ArgSize is non-zero, the event handler

makes a copy of the Args structure, which it frees when the event request is cleared. If Args is non-NULL
and ArgSize is zero, the event handler keeps the pointer to the structure without making a copy. In this case,
the structure is not freed when the event request is cleared.

BndingRect: a pointer to a rectangle specified in screen coordinates. The coordinates of the location object are
compared to this rectangle to determine if the event occurred inside or outside this region. When this
parameter is NULL, the request is interpreted implicitly as a simple edge event request, VUER_SE_EVENT.

InOut: a flag that specifies whether the event request should be interpreted an inside event request or an outside
event request. V_INSIDE indicates as an inside event request, satisfied when the locator is inside the region;
V_OUTSIDE indicates an outside event request, satisfied when the locator is outside the region.

KeyStr: a NULL-terminated string containing the keys that can be pressed to satisfy the event request. A zero-
length string means that any key is valid. When this parameter is NULL, the request is interpreted implicitly
as a position event request, VUER_POS_EVENT. When this parameter and BndingRect are both non-
NULL, the request is interpreted implicitly as a boundary edge event request, VUER_BRE_EVENT.

Label: a label given by the programmer to identify this event request.

The service routine is user-defined and should have the following form:
fcn (Client, Request, Label, Loc, Args);

where Client, Label, and Args are passed from the posting routine’s parameters, Request is the posting routine’s
return value, and Loc is the location object passed to the event handler that satisfied the event request. The service
routine must return a user defined value or one of four service result flags, which are listed in the description of
VUerServiceResultPost.

VUerServiceResultPost

 VUerpost Functions VUer Routines

Posts a service result request.

EVENT_REQUEST
VUerServiceResultPost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int ArgSize,
OBJECT MonitoredClient,
int ResultMask,
int Label)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerServiceResultPost posts a service result request with the event handler. It requires the following arguments:

Client: client id posting the service result request.
fcn: pointer to service result routine to call when the service result request is satisfied.
Args: the argument structure to pass on to the service result routine when it is called.
ArgSize: the size in bytes of the Args structure. If Args is non-NULL and ArgSize is non-zero, the event handler

makes a copy of the Args structure which it frees when the event request is cleared. If Args is non-NULL
and ArgSize is zero, the event handler keeps the pointer to the structure without making a copy. In this case,
the structure is not freed when the event request is cleared.

MonitoredClient: input object being monitored or client id of initial service routine necessary to satisfy the
service result request.

ResultMask: a mask that specifies which types of service result flags satisfy the service result request. The
following flags can be bitwise OR’ed together to make the mask.

INPUT_UNUSED indicates that no event request was satisfied.
INPUT_DONE indicates that input sequence was completed.
INPUT_ACCEPT indicates that the input was used by an input handler.
INPUT_CANCEL indicates that the input activity was canceled.

Label: a label defined by the programmer to identify this service result request.

The service routine is user-defined and should have the following form:
fcn (Client, Request, Label, Loc, Args);

where Client, Label, and Args are passed from the posting routine’s parameters, Request is the service result posting
routine’s return value, and Loc is the location object passed to the event handler that satisfied the original event
request. If you want to pass the input object being monitored to the service routine, you should pass it as the label or
as a member of the argument block. The service routine must return a user defined value or one of the four service
result flags listed above.

VUerWinEventPost

 VUerpost Functions VUer Routines

Posts a request for a window event.

EVENT_REQUEST
VUerWinEventPost (

OBJECT Client,
VUERFCNFUNPTR fcn,
ADDRESS Args,
int Label,
ULONG WinEventType)

int
fcn (

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerWinEventPost posts an event request for window events on the current screen. The device number of the
current screen is posted internally with the request. In a multiple-screen application, the event handler compares the
device number in location object’s WINEVENT structure against the device number in each request to determine
which event request the location object satisfies. This routine requires the following arguments:

Client: the client id making the request.
fcn: pointer to the service routine called when the request is satisfied.
Args: the argument structure passed to the service routine.
ArgSize: the size in bytes of the Args structure. If Args is non-NULL and ArgSize is non-zero, the event handler

makes a copy of the Args structure, which it frees when the event request is cleared. If Args is non-NULL
and ArgSize is zero, the event handler keeps the pointer to the structure without making a copy. In this case,
the structure is not freed when the event request is cleared.

Label: a label given by the programmer to identify this event request.
WinEventType: a flag indicating how the event request should be interpreted. You can only enter one event

request flag. To post for more than one event type, call this routine again with another event type and the
same service routine. The valid flags are:

VUER_RESIZE_EVENT A request for a resize event.
VUER_WINQUIT_EVENT A request for a window quit event.
VUER_ICONIFY_EVENT A request for an iconify event.
VUER_EXPOSE_EVENT A request for an expose event.
VUER_WIN_ENTER_EVENT A request for a window enter event.
VUER_WIN_LEAVE_EVENT A request for a window leave event.

The service routine is user-defined and should have the following form:
fcn (Client, Request, Label, Loc, Args);

where Client, Label, and Args are passed from the posting routine’s parameters, Request is the posting routine’s
return value, and Loc is the location object passed to the event handler that satisfied the event request. The
service routine must return a user defined value or one of four service result flags, which are listed in the
description of VUerServiceResultPost.

VUerhandler
VUerhandler Functions VUer Routines

These routines pass events to the event handler, then trigger appropriate service routines according to event requests.
Event requests are posted with the event handler by input objects through their interaction handlers, but they can
also be posted directly by the application programmer. Applications using these routines must include the header file
dvinteract.h.

See VUerPost, the next module, and the Interaction Handler chapter of the manual for more information about event
requests.

See Also
VUerpost Routines, Interaction Handlers, VOin Routines, VOit Routines

VUer VUerhandler VUerpost
VUerhandler Functions
VUerGetKeys Gets keys corresponding to a given action type.
VUerHandleLocEvent Handles a single event.
VUerHandler Starts an event service loop.
VUerPutKeys Associates keys with a particular action type.

VUerGetKeys

 VUerhandler Functions VUer Routines

Gets keys corresponding to a given action type.

char *
VUerGetKeys (

int ActionType)

VUerGetKeys returns the keys associated with a given action type specified in ActionType. See VUerPutKeys
below for possible values of ActionType.

VUerHandleLocEvent

 VUerhandler Functions VUer Routines

Handles a single event.

int
VUerHandleLocEvent (

OBJECT LocObject)

VUerHandleLocEvent services a single event by determining if it satisfies any posted event requests, calls the
associated service routine if it does, and triggers any service result routines. For more information about the way the
event handler services events, see the Event Handling chapter in the DV-Tools User’s Guide. Returns a result flag
from the last service routine called:

INPUT_UNUSED indicates that no event request was satisfied.
INPUT_DONE indicates that input sequence was completed.
INPUT_ACCEPT indicates that the input was used by an input handler.
INPUT_CANCEL indicates that the input activity was canceled.

VUerHandleLocEvent services applicable event and service result requests in the following order:

1. Services only the most recently posted window event request. Does not service any other requests.
2. Services only the most recently posted inside or simple edge event request and then services result

requests. Does not service outside event requests.
3. Services all the posted outside event requests, starting with the most recently posted.
4. Services all the posted service result requests, starting with the most recently posted.

VUerHandler

 VUerhandler Functions VUer Routines

Starts an event service loop.

void
VUerHandler (

int TermFlag,
VUERFCNFUNPTR TermFcn,
ADDRESS Args,
OBJECT *Loc,
int *TermCond)

int
TermFcn(

OBJECT Client,
EVENT_REQUEST Request,
int Label,
OBJECT Loc,
ADDRESS Args)

VUerHandler enters a continuous event service loop, calling TloPoll, using the LOC_POLL polling method, to
gather events, and VUerHandleLocEvent to handle them. It returns control to the caller depending on termination
flags or the result of a programmer-defined function. It also returns control when it collects an event which does not
satisfy any event requests. The routine arguments have the following functions:

TermFlag: a flag mask specifying handler states making the handler return control to the caller. The constants
for the flags below are predefined in dvinteract.h.

Flag Comment
ER_STOP_ON_ANY_EDGE Any key press or release.
ER_STOP_ON_LEAD_EDGE Reserved for future enhancements.
ER_STOP_ON_ANY_USE Result != INPUT_UNUSED
ER_STOP_ON_UNUSED Result == INPUT_UNUSED
ER_STOP_ON_DONE Result == INPUT_DONE
ER_STOP_ON_ACCEPT Result == INPUT_ACCEPT
ER_STOP_ON_CANCEL Result == INPUT_CANCEL
ER_STOP_ON_USED Result == INPUT_USED

TermFcn: an optional user-defined function called after each input event to determine if control should be
returned. An example would be a user-written time-out function. This function is called with the argument
Args; for example, (*TermFcn)(Args). If the function returns NULL, then the handler continues to process
events. If it returns non-NULL, then the handler returns control to the caller.

Loc: returns the location object if a request is unserviced and NULL if it is serviced.
TermCond: returns non-NULL if the routine terminates due to a TermFlag condition. A bit is set indicating

which TermFlag condition caused termination.
If both Loc and TermCond are NULL, then termination is due to a TermFcn condition.

VUerPutKeys

 VUerhandler Functions VUer Routines

Associates keys with a particular action type.

void
VUerPutKeys (

int ActionType,
char *Keys)

VUerPutKeys associates a string of keys, Keys, with a specified user action type, ActionType. Possible values for
ActionType are:

DONE_KEYS CANCEL_KEYS
SELECT_KEYS RESTORE_KEYS
CLEAR_KEYS TOGGLE_POLLING_KEYS

These action types are used by the interaction technique objects. The flag constants are predefined in dvinteract.h.
CLEAR_KEYS is implemented only for text entry interactions, and TOGGLE_POLLING_KEYS is currently
implemented only for slider2D interactions.

The key string for VUerPutKeys and VUerGetKeys is a NULL terminated character string. Each character in the
string indicates one of the defined keys. The character values \001, \002, and \003 correspond to the left, middle, and
right mouse buttons respectively. To specify that no keys are defined, use NULL in place of the string. An empty
string with a NULL termination binds all keys to the action.

Interaction Handlers (VN)
The behavior and appearance of input objects are controlled respectively by the interaction handlers and templates.
Interaction handlers are sets of internal routines that determine the general method by which an input object interacts
with the user. The interaction handler is attached to the input object’s input technique object, and must be externally
referenced using a GLOBALREF declaration. Interaction handlers work in conjunction with input objects and input
technique objects, which are covered in the VOin and VOit modules.

Templates
Layout.area

Restore.area
Done.area
Cancel.area
Flags.area

Key Bindings and Action Types
Echo Functions
Modifying Active Input Objects

Interaction Handlers
Templates Drawing Objects composed of three rectangle object ares.
Key Bindings and Action Types A list of action type flags
Echo Functions Customize input object behavior at critical points when drawn
Modifying Active Input Objects Methods for modifying active input objects
Name Description
VNbutton Implements a button interaction.
VNchecklist Implements a checklist interaction.
VNcombiner Allows multiple input objects to be embedded and controlled

within a single input object.
VNmenu Implements a menu-based interaction.
VNmultiplexor Implements a multiplexor-based interaction.
VNpalette Implements a color palette-based interaction.
VNslider Implements a valuator-based interaction.
VNslider2D Implements a 2-dimensional valuator-based interaction.
VNtext Implements a single line text entry interaction.
VNtextedit Implements a multi-line text editing interaction.
VNtoggle Implements a toggle-based interaction.

The following interaction handlers implement interactions using Motif or OPEN LOOK widgets. They are described
separately in the DataViews and the View Widget in the X Environment Manual:

VNwcheck Implements a widget-based checklist interaction.
VNwmenu Implements a widget-based menu interaction.
VNwradio Implements a widget-based radio button list interaction.
VNwslider Implements a widget-based valuator interaction.
VNwtext Implements a widget-based text entry interaction.
VNwtoggle Implements a widget-based text toggle interaction.

Templates
VN Description Layout.area Key Bindings Echo Functions Modifying Active

Templates are drawing objects composed of three rectangle object areas: the Layout area, the Objects area, and the
Flags area. Within the template, strict naming conventions must be followed for the areas and the objects within
those areas.

The Layout area contains the physical layout of the interaction. If the layout area is empty, it means that the
interaction handler does not echo, leaving the echoing to the caller. Also, default actions are used to control the input
sequence. The layout area must be named Layout.area.

The Objects area contains items that are displayed sequentially in buttons, scrolling checklists, scrolling menus, and
toggles. The objects area must be named Objects.area.

The Flags area contains optional flags that affect the appearance and behavior of the input devices. The objects that
define the individual flag must be bounded by an object named Flags.area. The objects’ names are constrained by
the naming conventions, but the content and type of the object itself varies depending on the flag and the desired
effect. Most of the objects in the Flags.area are named text objects, so if another object type is not specified, it is
assumed to be a text object. The names of the flags must match exactly; they are case sensitive, and must not contain
leading or embedded blanks. The text string must contain a colon (:) followed by the flag value; unlike the names,
the strings are case insensitive. Any text preceding the colon is ignored. See the description of each interaction
handler for the flags specific to that interaction handler.

Layout.area
VN DescriptionTemplates Key Bindings Echo Functions Modifying Active
Restore.area Done.area Cancel.area Flags.area

Layout.area defines the physical layout and is mapped onto the boundary of the input object. Layout.area is
stretched to fit, so its aspect ratio can be changed. The size, shape, and position of the components can be changed
by editing the template. Typical objects within the Layout.area are echo areas and pickable areas, which are usually
named with the suffix .area.

Objects that are not named using the naming convention are drawn as they appear in the template, letting you
customize the template with graphical ornamentation. Named text objects frequently serve as labels for other objects
in Layout.area. Hardware text objects that are named according to the *.text convention are scaled down and
cropped, if necessary, to fit the available space in the input object. All vector text objects are scaled automatically
and are never cropped.

The following objects, contained in Layout.area, are common to all interaction handlers except VNbutton. See the
description of each interaction handler for the objects specific to that interaction handler.

Restore.area lets the user restore the input variable attached to the input object to its original value by selecting
this area. This area is optional. If it is not present, restoration of the interaction is signalled by pressing a
“Restore” key. If no “Restore” key is defined and no Restore.area exists, the user cannot restore the
interaction.

Restore.text contains the label for Restore.area. In the templates supplied with DV-Tools, this string is
set to “Restore.” This string can be changed in the template. For example, the “Restore” area can be
labeled “Refresh.”

Restore.button is a button input object that lets the user restore the input variable. If used with
Restore.area, the button is scaled to fit Restore.area. To add a label, edit the label for the button input
object; Restore.text is mutually exclusive and cannot be used with this object.

Done.area lets the user signal that the interaction is complete by selecting this area. This area is optional. If it is
not present, completion of the interaction is signalled by pressing a “Done” key. If no “Done” key is
defined and no Done.area exists, the user cannot complete the interaction.

Done.text contains the label for the Done.area. In the templates supplied with DV-Tools, this string is
set to “Done.” This string can be changed. For example, the “Done” area can be labeled “Finish” or
“Exit.”

Done.button is a button input object that lets the user signal that the interaction is complete. If used
with Done.area, the button is scaled to fit done.area. To add a label, edit the label for the button input
object; Done.text is mutually exclusive and cannot be used with this object.

Cancel.area lets the user abort the current interaction by selecting this area. This area is optional. If it is not
present, the interaction must be aborted by pressing a “Cancel” key. If no “Cancel” key is defined and no
Cancel.area exists, the user cannot abort the interaction.

Cancel.text contains the label for Cancel.area. In the templates supplied with DV-Tools, this string is
set to “Cancel.” This string can be changed. For example, the “Cancel” area can be labeled “Abort” or
“Stop Input.”

Cancel.button is a button input object that lets the user abort the current interaction. If used with
Cancel.area, the button is scaled to fit Cancel.area. To add a label, edit the label for the button input
object; Cancel.text is mutually exclusive and cannot be used with this object.

Flags.area contains objects used to customize the interaction, such as flags controlling polling and echoing options.
The following flags are common to all interaction handlers.

PostType.flag is an optional flag that controls the test determining whether a pick actually intersected a pickable
object. Valid text strings are:

PostType:RECT indicates that the bounding rectangle of a pickable object is used for the intersection

test.

PostType:OBJECT indicates that the pickable object itself is used for the intersection test. This flag
value permits greater precision in interpreting where picks are located, but reduces interaction speed.
Since picking objects with the EDGE fill status attribute can be difficult, pickable objects should be
filled or transparent.

VNtype.flag is a required flag that identifies the template type to the interaction handler. If the VNtype.flag
matches the interaction handler type, the template is accepted. If the flag does not match, an error message
is generated. If no type is specified, operation continues. VNtype flags are required for templates used by
input objects edited in DV-Draw. Valid text strings are:

Flag Text String Interaction Type
VNtype:VNbutton button
VNtype:VNchecklist object and text checklists
VNtype:VNcombiner combiner of embedded input objects
VNtype:VNmenu object and text menus
VNtype:VNmultiplexor menu of embedded input objects
VNtype:VNpalette color palette
VNtype:VNslider sliders and scrollbars
VNtype:VNslider2D two-dimensional slider
VNtype:VNtext text entry
VNtype:VNtextedit two-dimensional text editing
VNtype:VNtoggle object and text toggles

Key Bindings and Action Types
VN Description Templates Echo Functions Modifying Active
VUerGetKeys, VUerPutKeys, VOitGetKeys, and VOitPutKeys support the definition and querying of current
global and local key bindings associated with the following ActionTypes used with input objects. For the results
from key actions, see theInterpretation of Action Types section for each input object.

Action ActionType Flag
Done DONE_KEYS
Cancel CANCEL_KEYS
Select SELECT_KEYS
Restore RESTORE_KEYS
Clear CLEAR_KEYS
Toggle Poll TOGGLE_POLLING_KEYS

VOitKeyOrigin supports definition and querying of the origin of the key bindings as either global or local. The
VUer routines handle the global key bindings, and the VOit routines handle the local key bindings. For more
information on key bindings and origins, see the VUer and VO modules.

Echo Functions
VN Description Templates Key Bindings Modifying Active

An echo function lets the user customize the behavior of an input object at the critical points when it is being drawn,
erased, updated, or when it is taking input. The echo function is attached to the input technique object using
VOitPutEchoFunction, and is invoked whenever the input object is initially drawn, takes input, is updated, is
redrawn, or is erased.

The echo function can be called with seven parameters. For parameter descriptions, see VOitPutEchoFunction.
Echo functions can be written with any selection of these arguments, depending on what is useful in the application.
A synopsis of the echo function unique to each interaction handler is included at the end of each interaction’s
description.

Modifying Active Input Objects
VN Description Templates Key Bindings Echo Functions
Input objects can be modified after they are drawn using one of several methods.

• Modify the template drawing attached to the input technique and redraw.
• Use VOitPutTemplate to associate a new template drawing with the input technique, and follow with a

redraw.
• Change the text strings in a menu or multiplexor using VOitListStart followed by TdpDrawNext or

TdpDrawNextObject.
• Change a variety of template objects by accessing internal structures of the input object. For more details

on the internal structures, see VOinGetInternal.

Interaction Handlers: VNbutton
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNbutton
The Button interaction handler presents a single selectable item and echoes the state of selection in one of two ways:
while the button is being selected (a push button) or until the button is selected again to deselect the item (a toggle
button). Both kinds of buttons can also echo an highlight state when the cursor is within the button boundary. The
appearance of the button in these different states is controlled by objects, usually subdrawings, in the template.
Button behavior can be customized by editing the objects as well as by editing the flags. Button input objects require
both button presses and releases to update properly. The text string for the button is set using VOitPutList. The
associated variable, defined by VOinPutVarList, is set to 32K when the button is echoing its selection.
SELECT_KEYS are the only key bindings used to interact with buttons. Requires a layout template.

Synopsis
GLOBALREF INHANDLER VNbutton;

Template
A sample template is shown below.

Sample Template (for a three-state push button)

The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:

Item.area - object defining the area where the button states are displayed. If Item.area is not defined, the button
states are mapped to the boundary of the input object, and the input object outline may not be visible.

Active.area - object defining the pickable area of the button, usually matching a particular part of the subdrawings
representing the button states. If Active.area is not defined, Item.area defines the pickable area. If neither is defined,
the entire button is pickable.

Objects.area:

Label.object defines the text attributes for the label. Label.object can be a text, vector text, or a subdrawing object
that refers recursively to a text or vector text object named Label.object. When Label.object is hardware text, the
label on the button is scaled to fit within the defined area.

Off_neutral.object - object representing the button when it is off and the cursor is not in the button.

Off_highlight.object - object representing the button when it is off and the cursor is in the button.

Off_pressed.object - object representing the button when it is off and a select key is being pressed in the button.

On_neutral.object - object representing the button when it is on and the cursor is not in the button.

On_highlight.object - object representing the button when it is on and the cursor is in the button.

On_pressed.object - object representing the button when it is on and the select key is being pressed.

Neutral.object - used for push buttons. Object representing the button when the cursor is not in the button.
Equivalent to Off_neutral.object.

Highlight.object - used for push buttons. Object representing the button when the cursor is in the button. Equivalent
to Off_highlight.object.

Pressed.object - used for push buttons. Object representing the button when a select key is being pressed in the
button. Equivalent to Off_pressed.object.
Using these objects, you can create buttons with the following states:

A two-state push button that uses Neutral.object and Pressed.object.
A two-state push button, called a poll push button, that uses Neutral.object and Highlight.object. Selection

occurs when the cursor enters the button. This kind of button is not generally recommended.
A three-state push button that uses all three objects.
A two-state toggle button that uses Off_neutral.object and On_neutral.object.
A two-state toggle button, called a poll toggle button, that uses Off_neutral.object and On_neutral.object.

Selection and deselection occur when the cursor enters the button. This kind of button is not generally
recommended.

A four-state toggle button that uses Off_neutral.object, Off_pressed.object, On_neutral.object, and
On_pressed.object.

A four-state toggle button with highlighting that uses Off_neutral.object, Off_highlight.object,
On_neutral.object, and On_highlight.object.

A six state toggle button with highlighting that uses Off_neutral.object, Off_highlight.object,
Off_pressed.object, On_neutral.object, On_highlight.object, and On_pressed.object.

Flags.area:

VNtype.flag - the correct text string is VNtype:VNbutton.

Erase.flag - controls whether the object representing the previous button state is erased before drawing the new
state. The default is YES. Valid text strings are:

Erase:YES - erases the previous state before drawing the new state.
Erase:NO - draws the new state without erasing the previous state, which can reduce flashing. To work

effectively, the objects that define the button states should overlap exactly, so when the object for the new
state is drawn, it completely covers the object for the previous state.

Selection.flag - controls whether the INPUT_DONE service result is generated on the key press or the key release.
The default is PRESS. Valid text strings are:

Selection:PRESS - INPUT_DONE service result is generated on the key press.
Selection:RELEASE - INPUT_DONE service result is generated on the key release. This option works only

when the DVUSE_KEYRELEASE_IN_BUTTON configuration variable is set to yes and is only applicable
to these kinds of buttons: two-state push button, three-state push button, four-state toggle button without
highlighting, and six-state toggle button.

Echo Function
The echo function for the button interaction handler is set up by a call to VOitPutEchoFunction. It has the

following unique call structure:
void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNbutton
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

 Action Type Locator Position Service Result Services
SELECT_KEYS In active area INPUT_DONE Draw echo, update vdp
Motion (buttons with

highlighting)
In active area INPUT_ACCEPT Update highlight

Motion (poll buttons) In active area INPUT_DONE Draw echo, update vdp

Summary of Template Areas, Objects, and Flags for VNbutton
Required areas for both push and toggle buttons:

Name Object Type Function
Layout.area graphic boundary of layout area
Objects.area rectangle boundary of objects area
Flags.area rectangle boundary of flags area

Required objects for push buttons (in the objects area):

Name Object Type Function
Neutral.object graphic unselected state for the button
Pressed.object graphic selected state for the button (except for poll button)

Required objects for toggle buttons (in the objects area):

Name Object Type Function
Off_neutral.object graphic neutral unselected state for the button
On_neutral.object graphic neutral selected state for the button (except for poll

button)

Required flags for both push and toggle buttons (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNbutton match to input object

Optional objects for both push and toggle buttons (in the layout area):

Name Object Type Function

Item.area graphic display area for objects representing states
Active.area graphic pickable area within the button

Optional objects for push buttons (in the objects area):

Name Object Type Function
Highlight.object graphic highlighted state for the button

Optional objects for toggle buttons (in the objects area):

Name Object Type Function
Off_highlight.object graphic highlighted, unselected state for the button
Off_pressed.object graphic pressed, unselected state for the button
On_highlight.object graphic highlighted, selected state for the button
On_pressed.object graphic pressed, selected state for the button

Optional flags for both push and toggle buttons (in the flags area):

Name Type Content Function
Erase.flag text Erase:YES erase previous state before drawing new state

Erase:NO draw new state over previous state
Selection.flag text Selection:PRESS selection occurs with the key press

Selection:RELEASE selection occurs with the key release
PostType.flag text PostType:RECT pick in bounding box

PostType:OBJECT pick on object only

Interaction Handlers: VNchecklist
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Additional Information
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNchecklist
The Checklist interaction handler allows selection and deselection from a list of items by using a “Select” key.
Selection is typically echoed by the appearance of a check of the programmer’s design beside the selected item, but
button items use only their own echoing. Each item corresponds to a variable descriptor that has been associated
with the interaction handler using VOinPutVarList. By default, (de)selecting an item sets the corresponding variable
to (0.0)1.0. The select values for the items can be changed using VOitPutListValues. Text strings for the checklist
interaction are set using VOitPutList. Requires a layout template.

Synopsis
GLOBALREF INHANDLER VNchecklist;

Template
A sample template is shown below.

Sample Template (for a scrolling object checklist)
The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:
Item_%d.area - selectable areas that correspond to the list of values and item choices (text, object, or button). Note
that %d is replaced by the number assigned to that item. For example, item areas are named Item_1.area,
Item_2.area, etc. Numbers are assigned sequentially beginning at one. The item choices, either Item_%d.text, Item_
%d.object, or Item_%d.button, appear within these selectable areas. The item choices are all Item_%d.text, all Item_
%d.object, or all Item_%d.button, but not a mixture. The items can be placed in the objects area or the layout area. If
placed in the layout area, the items maintain their position with respect to the item areas. If placed in the objects
area, the items are centered when displayed in the item areas.

Item_%d.text - specifies the attributes of the associated displayed label. VOitPutList can be used to set the text
strings programmatically, in which case the strings in the template are ignored. If insufficient text items are
supplied by VOitPutList, the excess template items are ignored. For scrolling checklists, text items may be
placed in the objects area and the text attributes scroll with the labels.

Item_%d.object - object in an object checklist. Objects can be either a single object or a subdrawing and must fit
within the item areas. Ignores VOitPutList. For scrolling checklists, object items must be placed in the
objects area. Object checklists can support labels when the items (Item_%d.object) are subdrawings which
use Label.area and Label.object in the subdrawing views.

Item_%d.button - button item in a checklist. Buttons are scaled to fit the item areas. If the buttons support
labels, VOitPutList can be used to set the text strings programmatically, in which case the button labels in
the template are ignored. For scrolling checklists, button items may be placed in the objects area and the
button appearance scrolls with the labels.

Check_%d.area - objects defining the areas where selection is echoed. Note that %d is replaced by the number
assigned to that item, where the first check area is Check_1.area, the second is Check_2.area, etc. Check areas are
not drawn when buttons are used as the items. Buttons provide their own echoing, so check areas are redundant and
should not be used.
Scroll.object - a slider or scrollbar input object that controls the scrolling of the items being displayed. The template
for this input object should not include up or down areas or buttons; they should be in the menu template.

Scroll.area - area that defines where Scroll.object will be drawn.

Up.area - when selected, scrolls the items being displayed up.

Up.text - text string containing the label for the Up.area.
Up.button - button input object for scrolling the items being displayed up. If used with Up.area, the button is

scaled to fit Up.area. To add a label, edit the label for the button input object; Up.text is mutually exclusive
and cannot be used with this object.

Down.area - when selected, scrolls the items being displayed down.

Down.text - text string containing the label for the Down.area.
Down.button - button input object for scrolling the items being displayed down. If used with Down.area, the

button is scaled to fit Down.area. To add a label, edit the label for the button input object; Down.text is
mutually exclusive and cannot be used with this object.

Flags.area:

VNtype.flag - the correct text string is VNtype:VNchecklist.

Check.sym - object or subdrawing that is used as a check mark indicating that a particular item is selected. This
object should be fully enclosed in Check.area. Not used with button items.

Check.area - area that is used to map Check.sym into each Check_%d.area when the corresponding item is selected.
Not used with button items.

CheckArea.flag - controls whether each Check_%d.area is drawn, but is not used with button items. The default is
DRAWN. Valid text strings are:

CheckArea:DRAWN - each Check_%d.area is drawn.

CheckArea:UNDRAWN - no Check_%d.area is drawn.

Increment.flag - controls the number of items scrolled at a time. The default is 1.

Additional Information
If a checklist item has been selected and there is no Check.area or no Check.sym, Check_%d.area is drawn in the
foreground color. If there is no Check_%d.area, the bounding box of the item is drawn in the foreground color. In
each case, when the checklist item is deselected, the area is redrawn in the background color. This does not apply to
button items, which handle their own echoing.

Echo Function
The echo function for the Checklist interaction handler is set up by a call to VOitPutEchoFunction. It has the
following unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *ValList,
ADDRESS *VdpList,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNchecklist
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

Action Type Locator Position Service Result Services
SELECT_KEYS In item areas INPUT_ACCEPT Draw echo; update vdp
SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore original vdp
SELECT_KEYS In Cancel.area INPUT_CANCEL Restore original vdp
SELECT_KEYS In slider or scrollbar INPUT_ACCEPT Scroll text block
SELECT_KEYS In scroll areas INPUT_ACCEPT Scroll items
DONE_KEYS In input object INPUT_DONE Update vdp
RESTORE_KEYS In input object INPUT_ACCEPT Restore original vdp
CANCEL_KEYS In input object INPUT_CANCEL Restore original vdp

Summary of Template Areas, Objects, and Flags for VNchecklist
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Optional areas:

Name Object Type Function
Objects.area rectangle boundary of objects area

Required objects (in the layout area or objects area):

Name Object Type Function
Item_%d.area graphic display areas for items (in layout area only)

Item_%d.text or text checklist items (text, objects, and buttons
Item_%d.object or graphic cannot be mixed). For button items, toggle
Item_%d.button button input object buttons are recommended.

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNchecklist match to input object

Optional objects (in the layout area):

Name Object Type Function
Check_%d.area graphic display areas for check symbols
Up.area graphic pickable area to scroll up through items

Up.text or text label for up area
Up.button button input object push button to scroll up through items

Down.area graphic pickable area to scroll down through items
Down.text or text label for down area
Down.button button input object push button to scroll down through items

Scroll.object slider or scrollbar input object to control scrolling
Scroll.area rectangle display area for slider or scrollbar

Done.area graphic boundary of done area
Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Optional objects (in the flags area):

Name Object Type Function
Check.sym graphic or text check symbol graphic
Check.area graphic mapped into layout check areas

Optional flags (in the flags area):

Name Type Content Function
CheckArea.flag text CheckArea:DRAWN draw the check areas
 CheckArea:UNDRAWN don’t draw the check areas
PostType.flag text PostType:RECT pick in bounding box

PostType:OBJECT pick on object only
Increment.flag text Increment:n the number of items to scroll by

Interaction Handlers: VNcombiner
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Additional Information
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNcombiner
The Combiner interaction handler allows multiple input objects to be embedded and controlled within a single input
object, allowing the construction of complex composite interaction objects. The embedded input objects, which must
be fully defined before being used in the combiner, are controlled as a unit. Each embedded input object is paired
with an input variable, which can be defined individually using VOinPutVarList before embedding, or as a group by
calling VOinPutVarList for the combiner input object. Combiner input objects cannot contain an embedded
combiner or multiplexor, but the embedded input objects can use different interaction handlers. Requires a layout
template.

Selecting Restore, Done, and Cancel areas affects the composite input object regardless of the state of embedded
input objects.

Synopsis
GLOBALREF INHANDLER VNcombiner;

Template
A sample template is shown below.

Sample Template

The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:

Input_%d.area - areas within which the embedded input objects function. The previously defined input objects are
mapped into these areas, so aspect ratio should be considered. Note that %d is replaced by the number assigned to
that item, where the first item is Input_1.area, the second Input_2.area, etc. Numbers are assigned sequentially
beginning at one.

Input_%d.text - text string used to document the combined form. It is not displayed when the interaction is run.

Flags.area:

VNtype.flag - the correct text string is VNtype:VNcombiner.

Additional Information
Since the combiner is treated as a unit, service result posting is done as a unit. To post a service result request for an
embedded input object, use VOinGetInternal to access the embedded input objects.

Echo Function
The echo function for the combiner interaction handler is set up by a call to VOitPutEchoFunction. It has the
following unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *ValList,
ADDRESS *VdpList,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNcombiner
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

Action Type Locator Position Service Result Services
SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore embedded objects
SELECT_KEYS In Cancel.area INPUT_CANCEL Restore embedded objects
DONE_KEYS In input object INPUT_DONE None
RESTORE_KEYS In input object INPUT_ACCEPT Restore embedded objects
CANCEL_KEYS In input object INPUT_CANCEL Restore embedded objects

Summary of Template Areas, Objects, and Flags for VNcombiner
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Required objects (in layout area):

Name Object Type Function
Input_%d.area rectangle embedded input object area

Input_%d.text text label for input object area

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNcombiner match to input object

Optional objects (in the layout area):

Name Object Type Function
Done.area graphic boundary of done area

Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area

Cancel.button button input object push button to signal cancel

Optional flags (in the flags area):

Name Type Content Function
PostType.flag text PostType:RECT pick in bounding box

PostType:OBJECT pick on pickable area only

Interaction Handlers: VNmenu
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Additional Information
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNmenu
The Menu interaction handler gets an item selection from the user and echoes the selection within the specified area.
Text menu items are echoed by toggling the fill of the item area or the thickness of the bounding box. Object menus
are echoed only by drawing the item area contained in the template. Button items are echoed using the echoing
inherent in the button. The associated variable, defined by VOinPutVarList, is set to whatever value corresponds to
the menu entry that is currently echoed, defined by VOitPutListValues. If VOitPutListValues is not called, the
variable is set to the index in the item’s name. Text strings for the menu interaction are set using VOitPutList. A
template is optional for text menu interactions and required for object menu interactions.

Synopsis
GLOBALREF INHANDLER VNmenu;

Template
A sample template is shown below.

Sample Template (for a scrolling text menu)

The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:
Item_%d.area - selectable areas that correspond to the list of values and item choices (label, object, or button). Note
that %d is replaced by the number assigned to that item. For example, item areas are named Item_1.area,
Item_2.area, etc. Numbers are assigned sequentially beginning at one. The item choices, either Item_%d.text, Item_
%d.object, or Item_%d.button, appear within these selectable areas. The item choices are all Item_%d.text, all Item_
%d.object, or all Item_%d.button, but not a mixture. The items can be placed in the objects area or the layout area. If
placed in the layout area, the items maintain their position with respect to the item areas. If placed in the objects
area, the items are centered when displayed in the item areas.

Item_%d.text - specifies the attributes of the associated displayed label. VOitPutList can be used to set the text
strings programmatically, in which case the strings in the template are ignored. If insufficient text items are
supplied by VOitPutList, the excess template items are ignored. For scrolling menus, text items may be

placed in the objects area and the text attributes scroll with the labels.
Item_%d.object - object in an object menu. Objects can be either a single object or a subdrawing and must fit

within the item areas. Ignores VOitPutList. For scrolling menus, object items may be placed in the objects
area. Object menus can support labels when the items (Item_%d.object) are subdrawings which use
Label.area and Label.object in the subdrawing views.

Item_%d.button - button item in a menu. Buttons are scaled to fit the item areas. If the buttons support labels,
VOitPutList can be used to set the text strings programmatically, in which case the button labels in the
template are ignored. For scrolling menus, button items may be placed in the objects area.

Status.area - area for displaying the last selected item. It is most useful when the menu has scrolling, since the last
selected item may be scrolled from view.

Status.text - text or vector text object that specifies the attributes for displaying the label of the last selected
item. Required for displaying the last selected item when using button items; highly recommended when
the text items are placed in the layout area instead of the objects area; not useful for object menus.

Scroll.object - a slider or scrollbar input object that controls the scrolling of the items being displayed.

Scroll.area - area that defines where Scroll.object will be drawn.

Up.area - when selected, scrolls the items being displayed up.

Up.text - text string containing the label for the Up.area.
Up.button - button input object for scrolling the items being displayed up. If used with Up.area, the button is

scaled to fit Up.area. To add a label, edit the label for the button input object; Up.text is mutually exclusive
and cannot be used with this object.

Down.area - when selected, scrolls the items being displayed down.

Down.text - text string containing the label for the Down.area.
Down.button - button input object for scrolling the items being displayed down. If used with Down.area, the

button is scaled to fit Down.area. To add a label, edit the label for the button input object; Down.text is
mutually exclusive and cannot be used with this object.

Flags.area:

VNtype.flag - the correct text string is VNtype:VNmenu.

Echo.flag - defines the type of menu echoing for text or object items. Button items use their own echoing. The
default is BORDER. Valid text strings are:

Echo:BORDER - toggles the line thickness attribute of Item_%d.area between thick and thin. If Item_%d.area
is drawn with a thick line it is highlighted with a thin line and vice versa. In object menus, the objects are
drawn without borders; the border is drawn only to highlight the chosen object.

Echo:FILL - toggles the fill of Item_%d.area between filled and unfilled. The area is drawn highlighted until
another item is pointed to. The highlight fill color is the fill color of the bounding box of the menu item.
This applies only to text menus.

Echo:NONE - menu items are never highlighted. This option is particularly useful when using an echo function
to draw your own echoes or using immediate action menus where the menu is erased after a selection is
made.

Poll.flag - controls whether the menu pays attention to non-pick cursor position within menu items. Button items use
their own polling. The default is YES. Valid text strings are:

Poll:YES - menu updates whenever the cursor is positioned within a selectable area, regardless of whether or
not a pick occurs.

Poll:NO - menu updates only when a “Done” or “Select” key is pressed. You must assign both DONE_KEYS
and SELECT_KEYS bindings.

Space.flag - determines whether highlighting of the menu item is deactivated when the cursor is not on the Item_
%d.area or the bounding box of the menu item object. The default is NO. This flag is only effective when the
Poll.flag is YES. Valid text strings are:

Space:NO - last menu item remains highlighted when the cursor is not in an item area.
Space:YES - whenever the cursor is in screen space other than a menu item no item is highlighted. The YES

option requires more overhead and does not provide current status.

Status.flag - determines whether the value of the menu’s control variable is used to highlight a menu choice when
the menu is initially drawn or when the value is reset below the lowest value associated with an item. The default is
NO. Valid text strings are:

Status:NO - no item is highlighted when the menu is initially drawn and the variable value is initially set to less
than the minimum value associated with the menu. Whenever the variable value is reset to a value below
the minimum value associated with the menu, no item is highlighted.

Status:YES - current value of the variable is used as an item index. The variable value is mapped to the nearest
value of an item.

Increment.flag - controls the number of items scrolled at a time. The default is 1.

Additional Information
When no template is used, the default menu is restricted to text items and is internally generated by the menu
interaction handler. The size of the menu is determined by the number and length of the text strings set using
VOitPutList. The upper left corner of the menu is drawn as close to the cursor location as possible, but is
constrained to fit into the input object’s drawing area. If the menu is too large to fit into the input object’s drawing
area, it is cropped to fit. The text is drawn using hardware text, size 2. If insufficient text items are supplied, the
excess template items are ignored.

Echo Function
The echo function for the menu interaction handler is set up by a call to VOitPutEchoFunction. It has the following
unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNmenu
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

 Action Type Locator Position Service Result Services
SELECT_KEYS In item areas INPUT_DONE Update highlight and vdp
 SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore original vdp

SELECT_KEYS In Cancel.area INPUT_CANCEL Restore original vdp
SELECT_KEYS In slider or scrollbar INPUT_ACCEPT Scroll text block
SELECT_KEYS In scroll areas INPUT_ACCEPT Scroll items
DONE_KEYS In input object INPUT_DONE Update vdp
CANCEL_KEYS In input object INPUT_CANCEL Restore original vdp
RESTORE_KEYS In input object INPUT_ACCEPT Restore original vdp
Motion (POLL:YES) In item areas INPUT_ACCEPT Update highlight and vdp
Motion (SPACE:YES) In input object INPUT_ACCEPT No highlight if outside item area
Motion (SPACE:NO) In input object INPUT_ACCEPT Last highlight remains in menu

Summary of Template Areas, Objects, and Flags for VNmenu
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Optional areas:

Name Object Type Function
Objects.area rectangle boundary of objects area

Required objects (in the layout area or objects area):

Name Object Type Function
Item_%d.area graphic display areas for items (in layout area only)

Item_%d.text or text menu items (text, objects, and buttons
Item_%d.object or graphic cannot be mixed). For button items, toggle
Item_%d.button button input object buttons are recommended.

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNmenu match to input object

Optional objects (in the layout area):

Name Object Type Function
Up.area graphic pickable area to scroll up through items

Up.text or text label for up area
Up.button button input object push button to scroll up through items

Down.area graphic pickable area to scroll down through items
Down.text or text label for down area
Down.button button input object push button to scroll down through items

Scroll.object slider or scrollbar input object to control scrolling
Scroll.area rectangle display area for slider or scrollbar
Done.area graphic boundary of done area

Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Status.area graphic display area for last selected item

Status.text text label for last selected text item

Optional flags (in the flags area):

Name Type Content Function
Echo.flag text Echo:BORDER border of pickable area echoes selection

Echo:FILL echo toggles pickable area between fill and
edge

Echo:NONE no echoing
Poll.flag text Poll:YES polls cursor position only for selection

Poll:NO polls picks only for selection
Space.flag text Space:NO item stays highlighted until another is selected

Space:YES item highlighted only when cursor in item areas
Status.flag text Status:NO no item highlighted when menu is initialized or

current value of variable is less any item value
Status:YES item with value nearest current value of

variable is highlighted
PostType.flag text PostType:RECT pick in bounding box of area

PostType:OBJECT pick on Item_%d.object only: object menus
only

Increment.flag text Increment:n the number of items to scroll by

Interaction Handlers: VNmultiplexor
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNmultiplexor
The Multiplexor interaction handler is a menu in which each selection activates a different input object in the shared
input area. Text items are echoed by toggling the fill of the item area or the thickness of the bounding box. Object
items are echoed only by drawing the item area contained in the template. Button items are echoed using the echoing
inherent in the button. The selections are labeled using the names of the variable descriptors, defined by
VOinPutVarList, associated with the embedded input objects, defined by VOitPutList. The variables associated with
each input object can be assigned individually by using VOinPutVarList, or as a group by calling VOinPutVarList for
the multiplexor input object. A multiplexor input object cannot contain an embedded combiner or multiplexor, but
the embedded input objects can use different interaction handlers. Binding the SELECT_KEYS and DONE_KEYS to
the same list of keys is recommended. Requires a layout template.

Synopsis
GLOBALREF INHANDLER VNmultiplexor;

Template
A sample template is shown below.

Sample Template
The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:
Item_%d.area - selectable areas that correspond to the input objects embedded in the multiplexor. Note that %d is
replaced by the number assigned to that item. For example, item areas are named Item_1.area, Item_2.area, etc.
Numbers are assigned sequentially beginning at one. The item choices, either Item_%d.text, Item_%d.object, or
Item_%d.button, appear within these selectable areas. The item choices are all Item_%d.text, all Item_%d.object, or
all Item_%d.button, but not a mixture. The items can be placed in the objects area or the layout area. If placed in the
layout area, the items maintain their position with respect to the item areas. If placed in the objects area, the items
are centered when displayed in the item areas.

Item_%d.text - specifies the attributes of the associated displayed label. The names of the variable descriptors
associated with the embedded input objects serve as the labels. VOitPutList can be used to set the text
strings programmatically, in which case the strings in the template are ignored. If insufficient text items are

supplied by VOitPutList, the excess template items are ignored. For scrolling multiplexors, text items may
be placed in the objects area and the text attributes scroll with the labels.

Item_%d.object - object identifying a choice. An object can be either a single object or a subdrawing and must
fit within the item areas. For scrolling multiplexors, object items may be placed in the objects area. Object
checklists can support labels when the items (Item_%d.object) are subdrawings which use Label.area and
Label.object in the subdrawing views.

Item_%d.button - button identifying a choice. Buttons are scaled to fit the item areas. If the buttons support
labels, VOitPutList can be used to set the text strings programmatically, in which case the button labels in
the template are ignored. For scrolling multiplexors, button items may be placed in the objects area.

Input.area - area shared by the embedded input objects associated with the selectable areas. As each area is selected,
the corresponding input object is activated within the shared input area. The templates of the embedded input objects
should be the same or have similar aspect ratios. Otherwise, the embedded input objects appear distorted.

Input_area.text - text string used to document the shared input area. It is not displayed when the interaction is
run.

Scroll.object - a slider or scrollbar input object that controls the scrolling of the items being displayed.

Scroll.area - area that defines where Scroll.object will be drawn.

Up.area - when selected, scrolls the items being displayed up.

Up.text - text string containing the label for the Up.area.
Up.button - button input object for scrolling the items being displayed up. If used with Up.area, the button is

scaled to fit Up.area. To add a label, edit the label for the button input object; Up.text is mutually exclusive
and cannot be used with this object.

Down.area - when selected, scrolls the items being displayed down.

Down.text - text string containing the label for the Down.area.
Down.button - button input object for scrolling the items being displayed down. If used with Down.area, the

button is scaled to fit Down.area. To add a label, edit the label for the button input object; Down.text is
mutually exclusive and cannot be used with this object.

Flags.area:

VNtype.flag - the correct text string is VNtype:VNmultiplexor.

Poll.flag - controls whether the multiplexor pays attention to non-pick cursor position within text or object items.
Button items use their own polling. The default is YES. Valid text strings are:

Poll:YES - updates whenever the cursor is positioned within a selectable area regardless of whether or not a pick
occurs.

Poll:NO - no updating occurs unless a “Select” or “Done” pick occurs.

Echo.flag - determines the type of item echoing used for a multiplexor with text or object items. Button items use
their own echoing. The default is BORDER. Valid text strings are:

Echo:BORDER - echoes the currently selected item by toggling the line thickness attribute of the Item_%d.area
between thick and thin. If the Item_%d.area is drawn with a thick line, it is highlighted with a thin line and
vice versa. In multiplexors using Item_%d.object, the objects are drawn without borders and the border is
drawn to highlight the object.

Echo:FILL - echoes the currently selected item by toggling the fill of the item area. The highlight fill color is
the fill color of the item’s bounding box. This applies only to multiplexors using Item_%d.text.

Echo:NONE - items are never highlighted. This option is particularly useful when using an echo function to
draw your own echoes or using immediate action multiplexors where the multiplexor is immediately erased

after a selection is made.

Space.flag - determines whether highlighting of the menu item is deactivated when the cursor is not on the Item_
%d.area or the bounding box of the menu item object. The default is YES. This flag is only effective when the
Poll.flag is YES. Valid text strings are:

Space:NO - last item remains highlighted when the cursor is not in an item area.
Space:YES - whenever the cursor is in screen space other than an item no item is highlighted. The YES option

requires more overhead and does not provide current status.

Status.flag - determines whether the initial value of the multiplexor’s control variable is used to highlight a choice
when the multiplexor is initially drawn. The default is NO. Valid text strings are:

Status:NO - no item is highlighted when the multiplexor is initially drawn and the variable value is initially set
to less than the minimum value associated with the multiplexor. Whenever the variable value is reset to a
value below the minimum value associated with the multiplexor, no item is highlighted.

Status:YES - current value of the variable is used as an item index. The variable value is mapped to the nearest
value of an item.

Increment.flag - controls the number of items scrolled at a time. The default is 1.

Echo Function
The echo function for the multiplexor interaction handler is set up by a call to VOitPutEchoFunction. It has the
following unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *ValList,
ADDRESS *VdpList,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNmultiplexor
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

Action Type Locator Position Service Result Services
SELECT_KEYS In item areas INPUT_ACCEPT Update vdp
SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore to original vdp and

embedded obj vdp
SELECT_KEYS In Cancel.area INPUT_CANCEL Restore to original vdp and

embedded obj vdp
SELECT_KEYS In slider or scrollbar INPUT_ACCEPT Scroll text block
SELECT_KEYS In scroll areas INPUT_ACCEPT Scroll items
DONE_KEYS In input object INPUT_DONE None
RESTORE_KEYS In input object INPUT_ACCEPT Restore to original vdp and

embedded obj vdp
CANCEL_KEYS In input object INPUT_CANCEL Restore to original vdp and

embedded obj vdp
Motion (POLL:YES) In item areas INPUT_ACCEPT Update highlight and vdp
Motion (SPACE:YES) In input object and

not in item area
INPUT_ACCEPT No highlight in menu

Motion (SPACE:NO) In input object and
not in item area

INPUT_ACCEPT Last highlight remains in menu

Summary of Template Areas, Objects, and Flags for VNmultiplexor
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Optional areas:

Name Object Type Function
Objects.area rectangle boundary of objects area

Required objects (in the layout area or objects area):

Name Object Type Function
Item_%d.area graphic display areas for items (in layout area only)

Item_%d.text or text menu items (text, objects, and buttons
Item_%d.object or graphic cannot be mixed). For button items, toggle
Item_%d.button button input object buttons are recommended.

Input.area graphic shared input object area (in layout area only)

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNmenu match to input object

Optional objects (in the layout area):

Name Object Type Function
Input_area.text text label for shared input object area
Up.area graphic pickable area to scroll up through items

Up.text or text label for up area
Up.button button input object push button to scroll up through items

Down.area graphic pickable area to scroll down through items
Down.text or text label for down area
Down.button button input object push button to scroll down through items

Scroll.object slider or scrollbar input object to control scrolling
Scroll.area rectangle display area for slider or scrollbar

Done.area graphic boundary of done area
Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Optional flags (in the flags area):

Name Type Content Function
Echo.flag text Echo:BORDER border of pickable area echoes selection

Echo:FILL echo toggles pickable area between fill and
edge

Echo:NONE no echoing
Poll.flag text Poll:YES polls cursor position only for selection

Poll:NO polls picks only for selection
Space.flag text Space:NO item stays highlighted until another is selected

Space:YES item highlighted only when cursor in item areas
Status.flag text Status:NO no item highlighted when menu is initialized or

current value of variable is less any item value
Status:YES item with value nearest current value of

variable is highlighted
PostType.flag text PostType:RECT pick in bounding box of area

PostType:OBJECT pick on Item_%d.object only: object menus
only

Increment.flag text Increment:n the number of items to scroll by

Interaction Handlers: VNpalette
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNpalette
The Palette interaction handler gets a color selection from the user and echoes it in Echo.area. The associated
variable, defined by VOinPutVarList, is set to the index of the selected color. A template is optional. When no
template is used, the palette fills the entire input object, no echoing is done, and the variable updates when a “Select”
key is pressed.

Synopsis
GLOBALREF INHANDLER VNpalette;

Template
A sample template is shown below.

Sample Template
The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:
Palette.area - sensitive area in the input template in which the color selection takes place. The Palette.area is used to
display a color palette from which a single color can be chosen. If no Palette.area is specified, the palette fills the
entire layout area.

Palette.text - labels the palette area for use in DV-Draw. It is not displayed when the interaction is run. This
label is optional.

Echo.area - area in which the currently selected palette color is echoed. The echo area can be any DataViews object.

Flags.area:

VNtype.flag - the correct text string is VNtype:VNpalette.

Poll.flag - controls whether the palette acknowledges non-pick cursor position within palette items. The default is

YES when a template is used. Valid text strings are:

Poll:YES - updates whenever the cursor is positioned within a palette item.
Poll:NO - updates only when a “Done” or “Select” key is pressed. You must assign both DONE_KEYS and

SELECT_KEYS bindings.

Echo Function
The echo function for the palette interaction handler is set up by a call to VOitPutEchoFunction. It has the
following unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNpalette
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

Action Type Locator Position Service Result Services
SELECT_KEYS (POLL:YES) In Palette.area INPUT_DONE Update vdp
 None (POLL:YES) In Palette.area INPUT_ACCEPT Update vdp
SELECT_KEYS (POLL:NO) In Palette.area INPUT_DONE Update vdp
SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore to original vdp
SELECT_KEYS In Cancel.area INPUT_CANCEL Restore to original vdp
DONE_KEYS In input object INPUT_DONE None
RESTORE_KEYS In input object INPUT_ACCEPT Restore to original vdp
CANCEL_KEYS In input object INPUT_CANCEL Restore to original vdp

Summary of Template Areas, Objects, and Flags for VNpalette
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNpalette match to input object

Optional objects (in the layout area):

Name Object Type Function
Palette.area rectangle boundary of palette area

Palette.text text label for palette area (in template only)
Echo.area graphic boundary of echo area

Echo.text text label for echo area (in template only)
Done.area graphic boundary of done area

Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Optional flags (in the flags area):

Name Type Content Function
Poll.flag text Poll:YES polls cursor position only for selection

Poll:NO polls picks only for selection
PostType.flag text PostType:RECT pick in bounding box

PostType:OBJECT pick on pickable area only

Interaction Handlers: VNslider
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNslider
The Slider interaction handler acts as a sliding valuator to get a value from the user. The current value echoes as the
position of a slider or a scrollbar along its track. The associated variable, defined by VOinPutVarList, is set to the
value, which is within the range set for the variable by VPvd_irange or VPvd_drange. A template is optional for
sliders but required for scrollbars.

Synopsis
GLOBALREF INHANDLER VNslider;

Template
A sample template is shown below.

Sample Template (for a slider)
The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:

Slider.area - sensitive area in the Input Template in which the slider action takes place. The Slider.area is filled along
the major axis in the input object’s foreground color. The portion of the slider between the current value and the
maximum value is filled with the input object’s background color. This area is required if the slider is to echo the
current value.

Slider.text - labels the slider area for use in DV-Draw. It is not displayed when the interaction is run. This label is
optional.

Min.area - an optional area for displaying the minimum value per Min.text below. The area is not drawn in the input
object.

Min.text - controls the position and appearance of the minimum value of the slider. This string is optional. It is
replaced by the actual minimum value associated with the variable descriptor attached to the input object.

Max.area - an optional area for displaying the maximum value per Max.text below. The area is not drawn in the
input object.

Max.text - controls the position and appearance of the maximum value of the slider. This string is optional. It is
replaced by the actual maximum value associated with the variable descriptor attached to the input object.

Varname.area - an optional area for displaying the variable name per Varname.text below. The area is not drawn in
the input object.

Varname.text - controls the position and appearance of the input variable name. This string is optional. The
name is the name field of the variable descriptor, which is set using VPvdvarname.

Digits.area - displays the digital value of the input variable. This area is optional, but must appear if Digits.text
exists.

Digits.text - controls the position and appearance of the digital display of the input variable. Digits.text must be
a valid C format string; for example, %6.3f. This string is optional but must appear if Digits.area exists.

Up.area - when selected, increments the current value of the input variable by a percentage of the range of the
variable descriptor controlling the input variable. See Increment.flag.

Up.text - text string containing the label for the Up.area.
Up.button - button input object for incrementing the current value. If used with Up.area, the button is scaled to

fit Up.area. To add a label, edit the label for the button input object; Up.text is mutually exclusive and
cannot be used with this object.

Down.area - when selected, decrements the current value of the input variable by a percentage of the range of the
variable descriptor controlling the input variable. See Increment.flag.

Down.text - text string containing the label for the Down.area.
Down.button - button input object for decrementing the current value. If used with Down.area, the button is

scaled to fit Down.area. To add a label, edit the label for the button input object; Down.text is mutually
exclusive and cannot be used with this object.

Flags.area:

VNtype.flag - the correct text string for both sliders and scrollbars is VNtype:VNslider.

Poll.flag - controls whether the slider or scrollbar pays attention to non-pick cursor position within Slider.area. The
default is YES. Valid text strings are:

Poll:YES - updates whenever the cursor is positioned within the slider regardless of whether or not a pick is
detected.

Poll:NO - updates only when a “Select” key is pressed.

Increment.flag - controls the percentage of the variable range by which the slider position changes when the Up.area
and Down.area objects are picked. The contents of the text string after the colon (:) are interpreted as a float
percentage of the variable range.

Direction.flag - determines the direction of slider movement. If no flag is specified, the default is movement along
the longer dimension of the slider. Valid text strings are:

Direction:Horizontal - slider moves right and left.
Direction:Vertical - slider moves up and down.

Type.flag - selects a SCROLLBAR or SLIDER representation when drawing the slider. The default is SLIDER. Valid

text strings are:

Type:SLIDER - draws valuator using slider representation.
Type:SCROLLBAR - pays attention to Anchor.flag and PageSize.flag.

Anchor.flag - determines where the cursor is anchored to the scrollbar page. Valid text strings are:

Anchor:Middle - places the scrollbar page centered around the last cursor position used as an update.
Anchor:Start - depends on the orientation. In a horizontal scrollbar, the page is to the right of the current

position. In a vertical scrollbar, the page is above the current position.

Anchor:End - depends on the orientation. In a horizontal scrollbar, the page is to the left of the current position. In a
vertical scrollbar, the page is below the current position.

PageSize.flag - controls the percentage of the variable range used as the scrollbar page size. The text string after the
colon (:) is interpreted as a float percentage of the variable range. If no PageSize.flag is specified, a scrolling line
appears in place of the scrollbar.

Echo Function
The echo function for the slider interaction handler is set up by a call to VOitPutEchoFunction. It has the following
unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNslider
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

 Action Type Locator Position Service Result Services
SELECT_KEYS (POLL:YES) In Slider.area INPUT_DONE Update slider and vdp
 SELECT_KEYS

(POLL:NO)
In Slider.area INPUT_DONE Update slider and vdp

SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore original vdp
SELECT_KEYS In Cancel.area INPUT_CANCEL Restore original vdp
SELECT_KEYS In increment areas INPUT_ACCEPT Update slider and vdp
DONE_KEYS In input object INPUT_DONE None
RESTORE_KEYS In input object INPUT_ACCEPT Restore original vdp
CANCEL_KEYS In input object INPUT_CANCEL Restore original vdp
Motion (POLL:YES) In Slider.area INPUT_ACCEPT Update slider and vdp

Summary of Template Areas, Objects, and Flags for VNslider
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Required object (in layout area):

Name Object Type Function
Slider.area rectangle pickable area and track for movement

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNslider match to input object

Additional required flags for scrollbars (in the flags area):

Name Type Content Function
Type.flag text Type:SCROLLBAR scrollbar input object

Type:SLIDER slide input object
Anchor.flag text Anchor:Middle scrollbar centered on current value

Anchor:Start scrollbar to the right or above current value
Anchor:End scrollbar to the left or below current value

Optional objects (in
the layout area):
Name Object Type Function
Slider.text text labels Slider.area (in template only)
Varname.area graphic area for variable label

Varname.text text controls style and position of the variable name
Min.area graphic area for minimum label

Min.text text controls style and position of the minimum value setting
Max.area graphic area for maximum label

Max.text text controls style and position of the maximum value setting
Digits.area graphic controls position of current value reading

Digits.text text controls style of current value reading
Up.area graphic pickable area to increment the value up

Up.text or text label for up area
Up.button button input object push button to increment the value up

Down.area graphic pickable area to increment the value down
Down.text or text label for down area
Down.button button input object push button to increment the value down

Done.area graphic boundary of done area
Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Optional flags (in the flags area):

Name Type Content Function
Poll.flag text Poll:YES polls cursor position only for selection in

slider.area
Poll:NO polls picks only for selection in slider.area

Increment.flag text Increment:% sets change increment as a percent of range

Direction.flag text Direction:Horizontal slider moves horizontally
Direction:Vertical slider moves vertically

PostType.flag text PostType:RECT pick in bounding box of area
PostType:OBJECT pick on area only

PageSize.flag text PageSize:% scrollbar size as percentage of slider dimension
(for scrollbars only)

Interaction Handlers: VNslider2D
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNslider2D
The Slider2D interaction handler acts as a two-dimensional valuator to get values from the user. It echoes the current
value as the position of a marker within the rectangular slider plane. The associated variables, defined by
VOinPutVarList, are set to the x and y values, which are within the range set for the variables by VPvd_irange or
VPvd_drange. A template is optional.

Synopsis
GLOBALREF INHANDLER VNslider2D;

Template
A sample template is shown below.

The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:
Slider2D.area - sensitive area in which the slider action takes place. This area is required if the slider is to echo the
current values.

Slider2D.text - labels the slider area for use in DV-Draw. It is not displayed when the interaction is run. This
label is optional.

Max_X.area, Min_X.area, Max_Y.area, Min_Y.area - display the areas for the slider’s maximum and minimum

dimension labels. These strings are optional, but must appear if the corresponding Max_X.text, Min_X.text,
Max_Y.text, or Min_Y.text exists.

Max_X.text, Min_X.text, Max_Y.text, Min_Y.text - control the position and appearance of the maximum and
minimum values of the slider. These strings are optional, but must appear if the corresponding Max_X.area,
Min_X.area, Max_Y.area, or Min_Y.area exists. They are replaced at run-time by the maximum and
minimum values associated with the variable descriptors attached to the input object.

Varname_X.area, Varname_Y.area - display the areas for the dimension labels. These strings are optional, but must
appear if the corresponding Varname_X.text or Varname_Y.text exists.

Varname_X.text, Varname_Y.text - control the position and appearance of the input variable names. These
strings are optional, but must appear if the corresponding Varname_X.area or Varname_Y.area exists. They
are replaced at run-time by the name fields of the variable descriptors, set using VPvdvarname.

Digits_X.area, Digits_Y.area - display the digital value of the input variable. These areas are optional, but they must
appear if the corresponding Digits_X.text or Digits_Y.text exists.

Digits_X.text, Digits_Y.text - control the position and appearance of the digital displays of the input variable.
Digits.text must be a valid C format string; for example, %-6.3f. These strings are optional, but must appear
if the corresponding Digits_X.area or Digits_Y.area exists.

North.area, NE.area, NW.area, South.area, SE.area, SW.area, East.area, West.area - when selected, increments or
decrements the current values of the corresponding input variables by a percentage, set by Increment.flag, of the
range of the variable descriptor controlling the input variable. The movements are: North = up, South = down, East
= right, West = left and NE, NW, SE, SW correspond to the diagonal directions.

North.text, NE.text, NW.text, South.text, SE.text, SW.text, East.text, West.text - text strings containing the labels
for the corresponding increment areas.

North.button, NE.button, NW.button, South.button, SE.button, SW.button, East.button, West.button - button input
objects for incrementing or decrementing the current values. If used with the corresponding areas, the
buttons are scaled to fit the areas. To add a label to a button, edit the label for the button input object; the
corresponding text labels (*.text) are mutually exclusive and cannot be used with the button input objects.

Marker.object is a custom marker that can be a primitive object or a subdrawing. If it is a subdrawing, the anchor for
positioning is the center of the view. Centering and scaling should be made in the view before loading as a
subdrawing. If the marker is a primitive object, the move point serves as the anchor. If an additional echo marker is
specified using EchoMethod.flag, that marker appears superimposed on Marker.object.

Flags.area:

VNtype.flag - the correct text string is VNtype:VNslider2D.

Poll.flag - controls whether the slider pays attention to non-pick cursor positions within Slider2D.area. The default
value is YES. Valid text strings are:

Poll:YES - updates whenever the cursor is positioned within the slider regardless of whether a pick is detected.
Poll:NO - updates only when a “Select” key is pressed.
The ActionType flag, TOGGLE_POLLING_KEYS, supports toggling of Poll.flag during interaction. When

Poll:Yes or no Poll.flag is set, this action key lets the user use the cursor to move the marker in
Slider2D.area, change the polling using a “Toggle Poll” action key, and move out of Slider2D.area without
affecting the marker position or current x and y values. Toggle polling is currently valid only for the
Slider2D. At least one key must be defined as a “Select” key for toggling to be effective. See the Key
Bindings and Action Types at the beginning of this chapter for more information.

Increment.flag - controls the percentage of the variable range by which the slider position changes when the
North.area, NE.area, NW.area, South.area, SE.area, SW.area, East.area, West.area objects are picked. The contents

of the text string after the colon (:) are interpreted as a float percentage of the variable range. The default is 5%.

IncrementX.flag and IncrementY.flag are used to control axis increments separately.

Echo.flag - specifies whether a marker echoes the current values. The default is YES. Valid text strings are:

Echo:YES - a marker echoes the current values in the Slider2D.area.
Echo:NO - no marker echoes the current values in the Slider2D.area.

EchoMethod.flag - specifies the geometric form of the echo marker. The default is plus:unfilled circle. The valid text
strings are:

EchoMethod:dot
EchoMethod:plus
EchoMethod:filled circle
EchoMethod:unfilled circle
EchoMethod:filled rect
EchoMethod:unfilled rect

The markers can be combined. For example:

EchoMethod:dot:unfilled circle

specifies an unfilled circle with a dot in its center.

Fixed.flag - determines where the anchor point for the current values is positioned on the marker’s bounding box.
This flag is only effective with the markers specified using the EchoMethod.flag. Whenever a Marker.object is
specified, Fixed.flag is ignored and markers are centered. The default anchor point is the center. Valid text strings
are:

Text String: Position on bounding box:
corner:ul upper left corner
corner:ur upper right corner
corner:ll lower left corner
corner:lr lower right corner
edge:top center point of the top edge
edge:bottom center point of the bottom edge
edge:left center point of the left edge
edge:right center point of the right edge

IconSize.flag - specifies the size, in screen coordinates, of the marker specified by EchoMethod.flag. The default is
20.

MarkerEraseMethod.flag - if present, specifies how erasing is performed. The default is restore raster if the
workstation supports it, erase otherwise. Valid text strings are:

MarkerEraseMethod:restore raster - restore the background using the saved raster.
MarkerEraseMethod:erase - erase the marker, but do not restore the background.

Echo Function
The echo function for the slider2D interaction handler is set up by a call to VOitPutEchoFunction. It has the
following unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *Value,

VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNslider2D
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

Action Type Locator Position Service Result Services
SELECT_KEYS (POLL:YES) In Slider2D.area INPUT_DONE Update slider and vdp
 SELECT_KEYS

(POLL:NO)
In Slider2D.area INPUT_DONE Update slider and vdp

SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore original vdp
SELECT_KEYS In Cancel.area INPUT_CANCEL Restore original vdp
SELECT_KEYS In increment areas INPUT_ACCEPT Update slider and vdp
DONE_KEYS In input object INPUT_DONE None
RESTORE_KEYS In input object INPUT_ACCEPT Restore original vdp
CANCEL_KEYS In input object INPUT_CANCEL Restore original vdp
Motion (POLL:YES) In Slider2D.area INPUT_ACCEPT Update slider and vdp
TOGGLE_POLLING_KEYS In Slider2D.area INPUT_ACCEPT Toggle polling NO/YES

Summary of Template Areas, Objects, and Flags for VNslider2D
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Required object (in layout area):

Name Object Type Function
Slider2D.area rectangle plane for marker positioning, pickable area

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNslider2D match to input object

Optional objects (in the layout area):

Name Object Type Function
Slider2D.text text labels Slider2D.area
Marker.object graphic custom marker for Slider2D.area
Varname_X.area graphic area for X dimension label

Varname_X.text text controls style and position of the X dimension name
Varname_Y.area graphic area for Y dimension label

Varname_Y.text text controls style and position of the Y dimension name
Min_X.area graphic area for minimum X-dimension label

Min_X.text text controls style and position of the minimum X value setting
Max_X.area graphic area for maximum X-dimension label

Max_X.text text controls style and position of the maximum X value setting

Min_Y.area graphic area for minimum Y-dimension label
Min_Y.text text controls style and position of the minimum Y value setting

Max_Y.area graphic area for maximum Y-dimension label
Max_Y.text text controls style and position of the maximum Y value setting

Digits_X.area graphic controls position of current X value reading
Digits_X.text text controls style of current X value reading

Digits_Y.area graphic controls position of current Y value reading
Digits_Y.text text controls style of current Y value reading

Additional optional objects (in the layout area):

Name Object Type Function
North.area graphic pickable area for incrementing value

North.text or text label for North area
North.button button input object push button for incrementing value

NE.area graphic pickable area for incrementing value
NE.text or text label for NE area
NE.button button input object push button for incrementing value

East.area graphic pickable area for incrementing value
East.text or text label for East area
East.button button input object push button for incrementing value

SE.area graphic pickable area for incrementing value
SE.text or text label for SE area
SE.button button input object push button for incrementing value

South.area graphic pickable area for incrementing value
South.text or text label for South area
South.button button input object push button for incrementing value

SW.area graphic pickable area for incrementing value
SW.text or text label for SW area
SW.button button input object push button for incrementing value

West.area graphic pickable area for incrementing value
West.text or text label for West area
West.button button input object push button for incrementing value

NW.area graphic pickable area for incrementing value
NW.text or text label for NW area
NW.button button input object push button for incrementing value

Done.area graphic boundary of done area
Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Optional flags (in the flags area):

Name Type Content Function
Echo.flag text Echo:YES marker echoes current values

Echo:NO no marker echoing
Poll.flag text Poll:YES polls cursor position only for selection in Slider2D.area

Poll:NO polls picks only for selection in Slider2D.area
Increment.flag Increment:% sets change increment as a percent of X and Y ranges
IncrementX.flag IncrementX:% sets change increment as a percent of X range
IncrementY.flag IncrementY:% sets change increment as a percent of Y range

IconSize.flag IconSize:pixels sets marker’s size in pixels
Fixed.flag corner:ul sets the anchor point on the marker’s bounding box for

positioning according to the current values.
For edges, the anchor is the center point of the chosen
edge.

corner:ur
corner:ll
corner:lr
edge:top
edge:bottom
edge:left
edge:right

Additional optional flags (in the flags area):

Name Type Content Function
PostType.flag text PostType:RECT pick in area’s bounding box

PostType:OBJECT pick on area only
EchoMethod.flag text EchoMethod:dot marker type

EchoMethod:plus marker type
EchoMethod:filled circle marker type
EchoMethod:unfilled circle marker type
EchoMethod:filled rect marker type
EchoMethod:unfilled rect marker type

MarkerEraseMethod.flag text MarkerEraseMethod:restore raster restores saved raster image
MarkerEraseMethod:erase draws rectangle in

background color

Interaction Handlers: VNtext
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Additional Information
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNtext
The Text interaction handler gets a line of text from the user and echoes the string using hardware text. If the string
is too long to fit in the viewport, it scrolls to the left as necessary. The text interaction handler only lets the user enter
characters up to the maximum length allowed by the variable descriptor set by VOinPutVarList and VPvddim. Only
single line text input is supported. A template is optional.

Synopsis
GLOBALREF INHANDLER VNtext;

Template
A sample template is shown below.

Sample Template
The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:
Text_Echo.area - area within which the text input is echoed as it is entered. The text entry is centered along the
vertical dimension and starts at the left edge of the area. If the input string is too long to fit, it scrolls to the left.

Text_Echo.text - hardware text object that is used to define the attributes for echoing text. It is not displayed
when the interaction is run. The color and size attributes are used in the echoed string.

Prompt.area - optional area that contains a prompt message. This area appears in the input object as drawn in
Layout.area.

Prompt.text - text string containing the prompt message. The text appears in the input object as drawn in
Layout.area.

Clear.area - optional area that lets the user erase the current input text string.

Clear.text - text string containing the label for the Clear.area. The string can be anything, but in the template
supplied with DV-Tools, this string is set to “Clear.”

Flags Area:

VNtype.flag - the correct text string is VNtype:VNtext.

Carat.flag - marks the current cursor position. The default is Carat:REVERSE. Valid text strings are:

Carat:YES or Carat:REVERSE - current position displayed in reverse video.
Carat:NONE - no cursor is displayed. In-line positioning and on-line editing are disabled. Allows deleting from

the end of the line.
Carat:BAR - a vertical bar is displayed to the left of the current position.
Carat:BOX - an open box is displayed around the current position.
Carat:UNDERSCORE - a horizontal bar is displayed beneath the current position.

Bell.flag - determines whether the bell sounds when there is too much text for the interaction handler to accept. The
default is YES. Valid text strings are:

Bell:YES - sets the bell to ring.
Bell:NO - sets the bell to not ring.

Flash.flag - controls the flashing of the text area background. The default is YES. Valid text strings are:

Flash:YES - the text area is flashed in the text background color when an error occurs during text entry.
Flash:NO - the text area is not flashed when errors occur during text entry.

Direction.flag - controls the default direction of text entry. The default is L_TO_R. Valid text strings are:

Direction:L_TO_R - text entry is from left to right.
Direction:R_TO_L - text entry is from right to left.

Additional Information
Characters entered anywhere within the screen area of the input object are checked for use as both text and as
control keys. The action keys, set using VUerPutKeys or VOitPutKeys, should be control characters so that they
do not conflict with the keys interpreted as text. The text interaction handler also uses the following line editing
characters:

Te
xt Editing Commands
Operation Character
Position cursor in text string select in text
Go forward one character ^L or right arrow key
Go back one character ^N or left arrow key
Go forward to next word ^P
Go back to previous word ^O
Go to beginning of line ^F or up arrow key
Go to end of line ^G or down arrow key
Delete previous character Delete or Backspace
Delete current character ^V
Delete to next white space ^E
Delete to previous white space ^W
Delete string Clear Keys or ^U
Reverse text entry direction ^\ (Ctrl-Backslash)
Restores string to original Restore Keys
Cancel Cancel Keys
Done Esc, Return, Line Feed, or Done

Keys
Echo Function

The echo function for the text interaction handler is set up by a call to VOitPutEchoFunction. It has the following

unique call structure:
void
echo_fcn (

OBJECT Input,
int Origin,
int State,
char **Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNtext
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

 Action Type Locator Position Service Result Services
SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Echo & restore original text
SELECT_KEYS In Cancel.area INPUT_CANCEL Echo & restore original text
SELECT_KEYS In Clear.area INPUT_ACCEPT Clear text and vdp
DONE_KEYS In input object INPUT_DONE None
RESTORE_KEYS In input object INPUT_ACCEPT Echo & restore original text
CANCEL_KEYS In input object INPUT_CANCEL Echo & restore original text
CLEAR_KEYS In input object INPUT_ACCEPT Clear text and vdp
ESC,RET,NEWLN In Text_Echo.area INPUT_DONE Echo and update vdp
^U In Text_Echo.area INPUT_ACCEPT Echo and update vdp
Other Keys In Text_Echo.area INPUT_ACCEPT Echo and update vdp

Summary of Template Areas, Objects, and Flags for VNtext
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Required object (in layout area):

Name Object Type Function
Text_Echo.area rectangle boundary of the text entry box

Required flags (in flags area):

Name Type Content Function
VNtype.flag text VNtype:VNtext match to input object

Optional objects (in layout area):

Name Object Type Function
Text_Echo.text text (hardware only) defines the size of the text
Prompt.area graphic boundary of prompt area

Prompt.text text label for prompt area
Clear.area graphic boundary of clear area

Clear.text or text label for clear area
Clear.button button input object push button to signal clear

Done.area graphic boundary of done area
Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Optional flags (in flags area):

Name Type Content Function
Carat.flag text Carat:YES or reverse video rectangle marks current

position
Carat:REVERSE
Carat:BAR vertical bar is left of current position
Carat:NONE no echo of current position
Carat:BOX unfilled box marks current position
Carat:UNDERSCORE underscore marks current position

Bell.flag text Bell:YES bell rings when text entered exceeds limit or
entry error is made

Bell:NO no bell sounds
Flash.flag text Flash:YES text area flashes when text entered exceeds

limit or entry error is made
Flash:NO no flashing occurs

Direction.flag text Direction:L_TO_R text entry is from left to right
Direction:R_TO_L text entry is from right to left

PostType.flag text PostType:RECT pick in bounding box of area
PostType:OBJECT pick on area only

Interaction Handlers: VNtextedit
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Additional Information
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNtextedit
The Text Editor lets the user enter and edit a block of text and echoes the block using hardware text. If the block is
too large to fit in the text echo area, it scrolls up and to the left and the cursor can scroll outside of the text echo area.
The text editor only lets the user enter characters up to the maximum length specified by the variable descriptor set
by VOinPutVarList and VPvddim. A template is optional. If you do not use a template, the input object uses an
editing window defined by internal defaults, like the one used for editing commands and view comments.

The example program text_editor.c shows how to load a form from a file into a text editor and save the edited text to
a file. If the text loaded into the editor contains tabs, the tabs are displayed as single spaces.

Synopsis
GLOBALREF INHANDLER VNtextedit;

Template
A sample template is shown below.

Sample Template
The following components are unique to this interaction handler. Components common to all interaction handlers
are described in the chapter introduction.

Layout.area:
Text_Echo.area - area within which the text input is echoed as it is entered. The cursor is initially located in the
upper left corner. If the input text is too large to fit, it scrolls up and to the left. The text echo area always displays at
least one row or one column of text even if the characters are drawn beyond the boundary of the text echo area. The
text echo area can display a maximum of 256 characters on each line, although the user can enter more than 256
characters. Text_Echo.area should be specified if any other objects are specified in Layout.area.

Text_Echo.text - hardware text object that is used to define the attributes for echoing text. It is not displayed
when the interaction is run. The color and size attributes are used in the echoed string.

HScroll.object, VScroll.object - optional slider or scrollbar input objects that control the horizontal and vertical
scrolling of the text being displayed. Using Poll:NO as the polling flag in the slider or scrollbar templates and
setting a select key for the text editor are recommended. The scrollbars or sliders respond to the same action keys as
the text editor.

HScroll.area, VScroll.area- optional areas that define where HScroll.object and VScroll.object will be drawn.

Prompt.area - optional area that contains a prompt message. This area appears in the input object as drawn in
Layout.area.

Prompt.text - text string containing the prompt message. The text appears in the input object as drawn in
Layout.area.

Clear.area - optional area that lets the user erase the current input text string.

Clear.text - text string containing the label for the Clear.area. The string can be anything, but in the template
supplied with DV-Tools, this string is set to “Clear.”

Clear.button - button input object for clearing. If used with Clear.area, the button is scaled to fit Clear.area. To
add a label, edit the label for the button input object; Clear.text is mutually exclusive and cannot be used
with this object.

Help.area - optional area that lets the user alternately display and erase a list of the control keys and their
corresponding editing actions. The list appears in the Text_Echo.area in place of the text and can be scrolled if it is
too large to fit.

Help.text - text string containing the label for the Help.area. The string can be anything, but in the template
supplied with DV-Tools, this string is set to “Help.”

Help.button - button input object for displaying help. If used with Help.area, the button is scaled to fit
Help.area. To add a label, edit the label for the button input object; Help.text is mutually exclusive and
cannot be used with this object.

Mark.area - optional area that lets the user enter a highlighting mode. After entering the highlight mode, press the
left mouse button to indicate the start position for the highlight. Press the left mouse button again the indicate the
end position for the highlight. The highlighted text can be cut, copied, or pasted.

Mark.text - text string containing the label for the Mark.area. The string can be anything, but in the template
supplied with DV-Tools, this string is set to “Mark.”

Mark.button - button input object for entering the highlight mode. If used with Mark.area, the button is scaled
to fit Mark.area. To add a label, edit the label for the button input object; Mark.text is mutually exclusive
and cannot be used with this object.

Copy.area, Cut.area, Paste.area, Mode.area- optional areas that let the user move highlighted blocks of text in the
following ways: copying text into a paste buffer, cutting text from the display and placing it in the paste buffer, or
pasting the text from the paste buffer into the display. You cannot paste text from one input object into another input
object. Selecting Mode.area switches between the three highlighting modes: area, rectangle, and lines.

Copy.text, Cut.text, Paste.text, Mode.text - text strings containing the labels for the Copy.area, Cut.area,
Paste.area, and Mode.area. The strings can be anything.

Copy.button, Cut.button, Paste.button, Mode.button - button input objects for handling highlighted blocks of
text. If used with the corresponding areas, the buttons are scaled to fit the areas. To add a label to a button,
edit the label for the button input object; the corresponding text labels (*.text) are mutually exclusive and
cannot be used with the button input objects.

Left.area, Right.area, Up.area, Down.area - optional areas that let the user scroll the text block left, right, up, and
down.

Left.text, Right.text, Up.text, Down.text - text strings containing the labels for the scroll areas. The strings can be
anything.

Left.button, Right.button, Up.button, Down.button - button input objects for scrolling the text. If used with the
corresponding areas, the buttons are scaled to fit the areas. To add a label to a button, edit the label for the
button input object; the corresponding text labels (*.text) are mutually exclusive and cannot be used with
the button input objects.

Flags Area:

VNtype.flag - the correct text string is VNtype:VNtextedit.

Cursor.flag - determines the style of the cursor marking the current position. The default is Cursor:UNDERSCORE.
Valid text strings are:

Cursor:REVERSE - current position is displayed in reverse video.
Cursor:COLOR - a colored rectangle is displayed at the current position. The foreground and background colors

of the flag determine the foreground and background of the character at the cursor position. These colors
should be different from the colors of Text_Echo.text.

Cursor:UNDERSCORE - a horizontal bar is displayed beneath the current position.

Bell.flag - determines whether or not the bell sounds when there is too much text for the interaction handler to
accept. The default is YES. Valid text strings are:

Bell:YES - sets the bell to ring.
Bell:NO - sets the bell to not ring.

Flash.flag - determines whether or not the text area background flashes when there is too much text for the
interaction handler to accept. The default is YES. Valid text strings are:

Flash:YES - the text area is flashed in the text background color.
Flash:NO - the text area is not flashed.

Edit.flag - determines whether or not text editing is enabled. The default is YES. Valid text strings are:

Edit:YES - text editing is enabled.
Edit:NO - text editing is not enabled. This is useful for displaying text that the user should not edit.

Direction.flag - controls the default direction of text editing. The default is L_TO_R. Valid text strings are:

Direction:L_TO_R - text entry is from left to right, the text is left-justified, and carriage returns move the cursor
to the left end of the next line.

Direction:R_TO_L - text entry is from right to left, the text is right-justified, and carriage returns move the
cursor to the right end of the next line.

Additional Information
Characters entered anywhere within the screen area of the input object are checked for use as both text and as
control keys. The action keys, set using VUerPutKeys or VOitPutKeys, should be control characters so they do not
conflict with the keys interpreted as text. Note that you can reassign the control keys listed below as action keys, but
they no longer function as editing commands. The following table shows the control characters and editing
commands:

Text Editing
Commands

Operation Character
Select position of cursor or highlight select in text
Toggle Help display on and off ^Q
Go to the left ^X ^L

Go to the right ^X ^R
Go forward one character ^L or right arrow key
Go back one character ^N or left arrow key
Go forward to next word ^P
Go back to previous word ^O
Go to beginning of line ^F
Go to end of line ^G
Go up one line ^X u* or up arrow

key
Go down one line ^X d* or down arrow

key
Go up one page ^X ^U
Go down one page ^X ^D
Delete previous character Delete or Backspace
Delete current character ^V
Delete to end of word ^E
Delete to beginning of word ^W
Delete current line ^U
Delete to end of line ^K
Delete all contents of editor Clear Keys
Add new line Return or LineFeed
Toggle insert/overwrite mode ^I
Enter highlight mode ^X h*, <select>
Cut highlighted region and put in paste buffer ^X t*
Copy highlighted region and put in paste

buffer
^X c*

Paste highlighted region or paste buffer to
cursor position

^X p*

Toggle highlight mode between area,
rectangle, and lines

^X m*

Reverse text editing direction ^\ (Ctrl-Backslash)
Abort without saving changes ^X ^S or Cancel Keys
Restore original text ^R or Restore Keys
Done Esc or Done Keys
* case-sensitive
Note that <Restore> keys toggle between the unchanged text and the most recently changed version of the text.

Echo Function
The echo function for the text interaction handler is set up by a call to VOitPutEchoFunction. It has the following
unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
char **Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNtextedit
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

Action Type Locator Position Service Result Services
SELECT_KEYS In Text_Echo.area INPUT_ACCEPT Change cursor or highlight
SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Echo & restore original text
SELECT_KEYS In Cancel.area INPUT_CANCEL Echo & restore original text
SELECT_KEYS In Clear.area INPUT_ACCEPT Clear text and vdp
SELECT_KEYS In Help.area INPUT_ACCEPT Display or erase help
SELECT_KEYS In Mark.area INPUT_ACCEPT Enter highlight mode
SELECT_KEYS In Mode.area INPUT_ACCEPT Switch highlight mode
SELECT_KEYS In Cut, Copy, etc. areas INPUT_ACCEPT Echo and update vdp
SELECT_KEYS In sliders or scrollbars INPUT_ACCEPT Scroll text block
SELECT_KEYS In Up, Down, etc. areas INPUT_ACCEPT Scroll text block
RESTORE_KEYS In input object INPUT_ACCEPT Echo & restore original text
CANCEL_KEYS In input object INPUT_CANCEL Echo & restore original text
CLEAR_KEYS In input object INPUT_ACCEPT Clear text and vdp
DONE_KEYS In input object INPUT_DONE None
ESC In Text_Echo.area INPUT_DONE None
^X ^S In Text_Echo.area INPUT_CANCEL Echo & restore original text
^X ^H In Text_Echo.area INPUT_ACCEPT Enter highlight mode
^X ^M In Text_Echo.area INPUT_ACCEPT Switch highlight mode
^Q In Text_Echo.area INPUT_ACCEPT Display or erase help
Motion (POLL:YES) In sliders or scrollbars INPUT_ACCEPT Scroll text block
Other Keys In Text_Echo.area INPUT_ACCEPT Scroll or echo and update vdp

Summary of Template Areas, Objects, and Flags for VNtextedit
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area

Required object (in layout area):

Name Object Type Function
Text_Echo.area rectangle boundary of the text entry box

Required flags (in flags area):

Name Type Content Function
VNtype.flag text VNtype:VNtextedit match to interaction

Optional objects (in layout area):

Name Object Type Function
Text_Echo.text text (hardware only) defines the attributes of the text (appears only in the

template)
Hscroll.area rectangle boundary for horizontal scrolling slider or scrollbar

Hscroll.object input object slider or scrollbar for scrolling the text
Vscroll.area rectangle boundary for vertical scrolling slider or scrollbar

Vscroll.object input object slider or scrollbar for scrolling the text
Up.area graphic boundary of up scrolling area

Up.text or text label for up scrolling area

Up.button button input object push button to scroll up through text
Down.area graphic boundary of down scrolling area

Down.text or text label for down scrolling area
Down.button button input object push button to scroll down through text

Left.area graphic boundary of left scrolling area
Left.text or text label for left scrolling area
Left.button button input object push button to scroll left through text

Right.area graphic boundary of right scrolling area
Right.text or text label for right scrolling area
Right.button button input object push button to scroll right through text

Prompt.area graphic boundary of prompt area
Prompt.text text label for prompt area

Help.area graphic boundary of help area
Help.text or text label for help area
 Help.button button input object push button for help action

Clear.area graphic boundary of clear area
Clear.text or text label for clear area
Clear.button button input object push button to signal clear

Done.area graphic boundary of done area
Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Additional optional objects (in layout area):

Name Object Type Function
Mark.area graphic boundary of mark area

Mark.text or text label for mark area
Mark.button button input object push button for mark action

Mode.area graphic boundary of mode area
Mode.text or text label for mode area
Mode.button button input object push button for mode action

Cut.area graphic boundary of cut area
Cut.text or text label for cut area
Cut.button button input object push button for cut action

Copy.area graphic boundary of copy area
Copy.text or text label for copy area
Copy.button button input object push button for copy action

Paste.area graphic boundary of paste area
Paste.text or text label for paste area
Paste.button button input object push button for paste action

Optional flags (in flags area):

Name Type Content Function
Cursor.flag text Cursor:REVERSE reverse video rectangle marks current

position
Cursor:COLOR colored rectangle marks current position
Cursor:UNDERSCORE underscore marks current position

Bell.flag text Bell:YES bell rings when text entered exceeds limit or
entry error is made

Bell:NO no bell sounds
Flash.flag text Flash:YES text area flashes when text entered exceeds

limit or entry error is made
Flash:NO no flashing occurs

Edit.flag text Edit:YES text editing is enabled
Edit:NO text editing is not enabled

Direction.flag text Direction:L_TO_R text editing is from left to right
Direction:R_TO_L text editing is from right to left

PostType.flag text PostType:RECT pick in bounding box of area
PostType:OBJECT pick on area only

Interaction Handlers: VNtoggle
VN Description
VNbutton VNmenu VNslider VNtextedit
VNchecklist VNmultiplexor VNslider2D VNtoggle
VNcombiner VNpalette VNtext

Introduction
Synopsis
Template
Echo Function
Interpretation of Action Types
Summary of Template, Areas, Objects, and Flags

VNtoggle
The Toggle interaction handler gets an item selection from the user and echoes the selection within the specified
viewport. The associated variable, set by VOinPutVarList, is set to the value that corresponds to the toggle entry
currently displayed. Values are defined by VOitPutListValues. If there is no corresponding value, the variable is set
to the index of the current toggle item. Toggle items can be text strings set using VOitPutList, button input objects
with labels set using VOitPutList, or objects. A template is optional for text toggle interactions and required for
object toggle interactions.

Synopsis
GLOBALREF INHANDLER VNtoggle;

Template
A sample template is shown below.

Sample Template (for an object toggle)
The following components are unique to this interaction handler. The components common to all interaction
handlers are described in the chapter introduction.

Layout.area:
Item.area - area in which the toggle items are displayed. Selecting this area toggles the displayed item to the next
item in the sequence. The item choices are all Item_%d.text, all Item_%d.object, or all Item_%d.button, but not a
mixture.

Item_%d.text - text object used to define the attributes used to display the text toggle items. The text string is
not displayed during the interaction. The background color of the text is the erase color for the toggle items
in an object toggle. VOitPutList can be used to set the text strings programmatically. Usually only one text
item is used, but multiple text items may be placed in the objects area and then the labels are centered in the
item area and the text attributes toggle with the labels.

Item_%d.object - object item. Objects can be either a single object or a subdrawing and must be placed in the
objects area. Ignores VOitPutList. The items must fit within the item area, are centered in the item area
when displayed, and are erased using the background color of Item.text. Object toggles can support labels
when the items (Item_%d.object) are subdrawings which use Label.area and Label.object in the
subdrawing views.

Item_%d.button - button item. Buttons are scaled to fit the item area. If the buttons support labels, VOitPutList
can be used to set the text strings programmatically. Usually only one button item is used, but multiple
button items may be placed in the objects area and then the buttons are centered in the item area and the

button appearance toggles with the labels.

Next.area - when selected, toggles to the item with the next highest number.

Next.text - text string containing the label for the Next.area.
Next.button - button input object for toggling to the next item. If used with Next.area, the button is scaled to fit

Next.area. To add a label, edit the label for the button input object; Next.text is mutually exclusive and
cannot be used with this object.

Previous.area - when selected, toggles to the item with the next lowest number.

Previous.text - text string containing the label for the Previous.area.
Previous.button - button input object for toggling to the previous item. If used with Previous.area, the button is

scaled to fit Previous.area. To add a label, edit the label for the button input object; Previous.text is
mutually exclusive and cannot be used with this object.

Flags.area:
Wrap.flag - controls how the toggle behaves when you attempt to pass the beginning or end of a list of items. The
interaction handler wraps around to the first item in the list, or starts back down the list; decrementing the list until it
reaches the beginning, and starts incrementing again. The default value is YES. Valid text strings are:

Wrap:YES - wraps around. After the toggle displays the last item, the first item follows in a cyclical sequence.
Wrap:NO - goes back and forth along the list. After the toggle displays the last item, the second to last item

follows.

Echo Function
The echo function for the toggle interaction handler is set up by a call to VOitPutEchoFunction. It has the following
unique call structure:

void
echo_fcn (

OBJECT Input,
int Origin,
int State,
double *Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args)

Interpretation of Action Types for VNtoggle
The following table of action types specifies how certain key presses are to be interpreted based on the interaction
handler and the context of the action. Valid action types are:

• DONE_KEYS • RESTORE_KEYS
• CANCEL_KEYS • CLEAR_KEYS
• SELECT_KEYS • TOGGLE_POLLING_KEYS

 Action Type Locator Position Service Result Services
SELECT_KEYS In item area INPUT_ACCEPT Echo and update vdp
 SELECT_KEYS In Done.area INPUT_DONE None
SELECT_KEYS In Restore.area INPUT_ACCEPT Restore original vdp
SELECT_KEYS In Cancel.area INPUT_CANCEL Restore original vdp
SELECT_KEYS In increment areas INPUT_ACCEPT Echo and update vdp
DONE_KEYS In input object INPUT_DONE None
RESTORE_KEYS In input object INPUT_ACCEPT Restore original vdp
CANCEL_KEYS In input object INPUT_CANCEL Restore original vdp

Summary of Template Areas, Objects, and Flags for VNtoggle
Required areas:

Name Object Type Function
Layout.area graphic boundary of layout area
Flags.area rectangle boundary of flags area
Objects.area rectangle boundary of objects area (required for object

toggles; optional for text toggles)

Required objects (in the layout area or objects area):

Name Object Type Function
Item.area graphic display area for items (in layout area only)

Item_%d.text or text toggle items (text, objects, and buttons cannot be
mixed). For button items, push buttons are
recommended. Object items must be in objects
area

Item_%d.object or graphic
Item_%d.button button input object

Required flags (in the flags area):

Name Type Content Function
VNtype.flag text VNtype:VNtoggle match to input object

Optional objects (in layout area):

Name Object Type Function
Next.area graphic pickable area to toggle to next numbered item

Next.text or text label for next area
Next.button button input object push button to toggle to next numbered item

Previous.area graphic pickable area to toggle to previous numbered item
Previous.text or text label for previous area
Previous.button button input object push button to toggle to previous numbered item

Done.area graphic boundary of done area
Done.text or text label for done area
Done.button button input object push button to signal done

Restore.area graphic boundary of restore area
Restore.text or text label for restore area
Restore.button button input object push button to signal restore

Cancel.area graphic boundary of cancel area
Cancel.text or text label for cancel area
Cancel.button button input object push button to signal cancel

Optional flags (in flags area):

Name Type Content Function
Wrap.flag text Wrap:YES sequence wraps around, first item follows last

Wrap:NO sequence ascends, then descends
PostType.flag text PostType:RECT pick in bounding box

PostType:OBJECT pick on pickable area only

VD - Display Formatters
Introduction
VDbars
VDblocks
VDbullseye
VDclock
VDcolorbar
VDcombos
VDcontours
VDcontrollers
VDdials
VDdigit
VDdrawings
VDface
VDfader
VDfan
VDhighlowopen-close
VDhorizon
VDindicator
VDknob
VDlegend
VDlines
VDmeter
VDpie
VDpoint
VDprimitives
VDradials
VDscatters
VDsize
VDspectros
VDstrips
VDsurface
VDtext

VDtime
VDvectors
VDwebs

Display Formatters (VD)
Introduction
Data structures that display the graphic encoding of data on the screen. To use one of these data structures, you must
first declare it using GLOBALREF, then use VPdgdf to attach the display formatter to the data group you want to
display.

In this chapter, the term variable is used to mean variable descriptor.

All variables within a data group must have the same dimension. Variables within a single graph should also have
the same range, unless the graph description explicitly states that the display formatter can handle more than one
range. For additional information, see VPvddim.
Elements of matrix variables are displayed from the lower left of the matrix to the upper right. Vectors are displayed
from left to right. For example, if the shape of a matrix variable descriptor is 3 columns x 2 rows, then the variable
elements are displayed in the following order:

1,2 2,2 3,2
1,1 2,1 3,1

Display Formatters

Name Description
VDbars
VDbar Vertical bar chart.
VDbarhoriz Horizontal bar graph.
VDbarpacked Bar graph, no spaces between bars.
VDbarsolid Bar chart, each bar a single color.
VDcenter Centered bar chart.
VDpig Piggyback bar chart.
VDpigdist Statistical distributions using piggyback bars.

VDblocks
VDcprects Packed rectangles with changing color.
VDrects Rectangles with changing color.

VDbullseye
VDbullseye Cartesian graph of (x,y) points.

VDclock
VDanclock Simulated analog clock.

VDcolorbar
VDcolorbar Horizontal legend showing the color threshold table of the variable.

VDcombos
VDbarline Vertical bar and line graph combination.
VDbarpackedline Packed bar and line graph combination.
VDbarplstacked Stack of packed bar-line graphs.
VDhilobar Vertical bar and high-low-close graph combination.
VDhiloline Line and high-low-close graph combination.
VDptsline Points and line graph combination.

VDcontours
VDcontour Contour plot of a matrix variable.
VDfcontour Filled contour plot of a matrix variable.

VDcontrollers
VDcontroller Combination of bar and point graphs.
VDhorizcontroller Combination of horizontal bar and point graphs.

VDdials
VDdial 180-degree dial.
VDdial360 360-degree dial.
VDhistdial Dials with dots for previous values.

VDdigit
VDdigits Digital display.

VDdrawings
VDdrawing Runs a view created with DV-Draw.
VDmovedrawing Rotates, scales, and moves a drawing.

VDface
VDface Face with changing features.

VDfader
VDfader Fader display.

VDfan
VDfan Nested fans.

VDhighlowopen-close
VDhighlow High-low-open-close display.

VDhorizon
VDhorizon Artificial horizon graph.

VDindicator
VDindicator Marker display of current variable value.

VDknob
VDknob Knob with a 270 degree range.

VDlegend
VDlegend Legend for each variable.

VDlines
VDline Line graph.
VDlinedist Statistical distributions using filled lines.
VDlinefill Line graph filled below lines.
VDlinefstacked Stack of filled line graphs.
VDlinestacked Stack of line graphs.
VDstep Horizontal value lines connected by vertical lines.

VDmeter
VDmeter Logarithmic meter.

VDpie
VDpie Pie chart.

VDpoint

VDpoints Points graph.

VDprimitives
VDbox Box with changing color and shape.
VDcircle Circle with changing color and size.
VDtriangle Triangles with changing color and shape.

VDradials
VDne_radial Polar coordinate graph, no erasing.
VDradial Polar graph, erasing after 360 degrees.

VDscatters
VDimpulse Scatter plot with vertical lines.
VDimpulseto0 Scatter plot with vertical lines symmetrically about zero.
VDscatter Scatter plot.

VDsize
VDsize Rectangles with changing length and width.

VDspectros
VDspectro Colored bar for each sample of the variable.
VDspectrointp Interpolated colored bar for each sample of the variable.
VDspectrointpstkd Stack of interpolated spectro graphs.
VDspectrostacked Stack of spectro graphs.

VDstrips
VDstrip Line graph that scrolls with time.
VDstripras Strip chart that scrolls using raster images.
VDstripstacked Stack of strip charts.
VDvstrip Strip chart that scrolls up.
VDvstrip_r Strip chart that scrolls up using raster images.
VDwaterfall Strip chart that scrolls down.
VDwaterfall_r Strip chart that scrolls down using raster images.

VDsurface
VD3dsurface Three-dimensional surface graph.

VDtext
VDmessage One or more text graphs.
VDtext Text in the center of the viewport.

VDtime
VDrtline Line graph with time-stamped values.
VDrtstep Stacked step graph with time-stamped values.

VDvectors
VDflowfield Scatter plot of vectors.
VDvector Array of vectors (x, y, and color).

VDwebs
VDmultiyweb Scatter plot with lines connecting each point to adjacent points and multiple vertical value

axes.
VDweb Serial (x,y) points connected by lines.

VDbars
Bar charts.
Synopses

GLOBALREF DISPFORM VDbar;
GLOBALREF DISPFORM VDbarhoriz;
GLOBALREF DISPFORM VDbarpacked;
GLOBALREF DISPFORM VDbarsolid;
GLOBALREF DISPFORM VDcenter;
GLOBALREF DISPFORM VDpig;
GLOBALREF DISPFORM VDpigdist;

Descriptions
VDbars DV-Draw Graph Type: see routines below
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 1 Max Samples:

unlimited
Axis Types: Time (x) vs Value (y) (first variable only)

Bar graphs display data values using one bar for each data element. Additional variables are displayed using
additional bars, lines, or whole bar graphs. The dimension of the bar is proportional to the variable value.

The bar color is determined by the color or color threshold table associated with the variable.

Bar graphs wrap around to the beginning of the data viewport, scroll left, or scroll up, depending on the value of
VPdgscroll_amount. The default is to wrap around to the beginning.

VDbar draws a vertical bar graph. The corresponding DV-Draw graph type is Bar Chart.

VDbarhoriz draws a horizontal bar graph. The corresponding DV-Draw graph type is Horizontal Bar Chart.

VDbarpacked draws a vertical bar graph without spaces between the bars. The corresponding DV-Draw graph type
is Packed Bar Chart.

VDbarsolid draws a vertical bar graph where each bar is filled with a single color. The bar color is determined by
the color or color threshold table associated with the variable. If there is no color threshold table, VDbarsolid is
identical to VDbar. The corresponding DV-Draw graph type is Solid Bar Chart.

VDcenter draws a centered vertical bar graph with the columns mirrored around the base line and centered
vertically in the data viewport. The corresponding DV-Draw graph type is Centered Bar Chart.

VDpig draws a stacked bar graph in which the variable values are stacked vertically with the first variable on the
bottom. The corresponding DV-Draw graph type is Piggyback Bar Chart.

The range of the graph equals the sum of the variable ranges. The variables should be either all logarithmic or all
linear.

VDpigdist draws a stacked bar graph in which the variable values are stacked on top of each other with the first
variable on the bottom. The corresponding DV-Draw graph type is Piggyback Bar Distribution.

All variables must have the same range. The range of the graph equals the range of the attached variables. The sum
of the variable values for each sample should not exceed the maximum range value. The range of the value scale
equals the sum of the ranges of the variables attached. For example, if a graph had three variables with a range of 0
to 1, the range of the graph is 0 to 10. A given sample of the three variables might have values of 2, 3, and 5 or 2, 3,
and 4 but not 2, 3, and 6.

See also VDpig.

VDblocks
VDrects, VDcprects - rectangular color patch graphs.
Synopses

GLOBALREF DISPFORM VDcprects;
GLOBALREF DISPFORM VDrects;

Descriptions
Both formatters display an array of rectangles. The color of each block is determined by the color or color threshold
table associated with the variable. The data value is displayed in the center of each block.

VDcprects DV-Draw Graph Type: Packed Block
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 5
History: No Min Samples: 1 Max Samples: 1
Axis Types: Value Tick Label (digital value display), Horizontal (columns), Vertical (rows), Time

Tick Label (iteration number)

VDcprects displays each box without separating outlines.

VDrects DV-Draw Graph Type: Block
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 5
History: No Min Samples: 1 Max Samples: 1
Axis Types: Value Tick Label (digital value display), Horizontal (columns), Vertical (rows), Time

Tick Label (iteration number)

VDrects displays each box outlined in the background color.

VDbullseye
Displays (x,y) points on a Cartesian graph.
Synopses

GLOBALREF DISPFORM VDbullseye;

Descriptions
VDbullseye DV-Draw Graph Type: Bullseye
Variable Shape: scalar, vector[2] Min Variables:

see below
Max Variables: 25

History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time Axis Grid (rectilinear target lines) or Value Axis Ticks (radial target lines)

VDbullseye accepts either scalar or vector[2] variables. If scalar, two variables are required for each graph point
to provide the x and y values respectively. If vector, the variable can only have two elements, for the x and y values
respectively.

The range of the variables must be symmetrical around zero. All variables must have the same range.
To control the axes and target lines, use the following VPdgcontext flags:

To display the axes, set the V_FV_GRID flag to YES. Use VPdggrid_attr to control the color and line type of the
grid. The grid consists only of the x and y axes.

To display radial target lines, set the V_FV_TICS flag to YES.
To display rectilinear target lines, set the V_FT_GRID flag to YES.
To change the number of target lines, set VPdgtime_start_incr to the desired number of target lines.

When using vector variables, the first n variables provide target line values where n is the number of target lines
specified. If the target lines are radial, the first element of the vector is the radius of the circle and the second
element is ignored. If the target lines are rectilinear, the first element of the vector provides the x position and the
second element provides the y position. The remaining variables are plotted as x,y coordinates.

When using scalar variables, the first n variables provide target line values for radial target lines where n is the
number of target lines specified. Each target line value provides the radius of a circle. If the target lines are
rectilinear, 2n variables are required for the target line values. In each pair of variables, the first variable provides the
x position and the second provides the y position. The remaining variables are plotted as x,y coordinates, so there
must be an even number of graph variables. The graph attributes are determined by the second variable (the y
variable) in each pair.

The graph variables are plotted alternately as a solid vector and a clock hand, starting with a solid vector, to prevent
vector pairs from overlapping. The hour hand can be hollow or filled. To produce a hollow hour hand, set the
V_FV_TICS to YES and the V_FV_LABEL_TICS flags to NO. To produce a filled hour hand, set both the
V_FV_TICS and V_FV_LABEL_TICS flags to YES.

The color of the solid vectors and clock hands is determined by the color associated with the variable if you are
using a vector variable, or by the color associated with the second variable if you are using scalar variables. If the
determining variable has a color threshold table, the color is determined by that variable value and the corresponding
color in that threshold table.

The scale of the graph corresponds to the range of the variables. This scale is applied to both the x and y axes. This
display formatter does not currently allow separate scale control of the x and y axes.

This display formatter supports color threshold tables when using radial target lines. The number of entries in the
color threshold table should be one more than the number of target lines. This provides a color range between each
pair of target lines and beyond the innermost and outermost target lines. The actual numerical values of the
thresholds are ignored; thresholds are set to equal the range bar values. When the variable value crosses a range bar
value, the color of the vector or clock hand changes. If there are not enough thresholds, no color dynamics are used.
If there are extra thresholds, the graph starts with the lowest threshold and uses only as many thresholds as it needs.

The number of history slots displayed is determined by the number specified by VPdgslots. To display history, the
value must be greater than 1 and the variable must have any marker except the null marker. If either of these
conditions is not true, no history is displayed. When using history, each new vector and clock hand leaves a history
marker in the color of the vector or clock hand.

VDclock
Draws a simulated analog clock.
Synopses

GLOBALREF DISPFORM VDanclock;

Descriptions
VDanclock DV-Draw Graph Type: Clock
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 2
History: No Min Samples: 1 Max Samples: 1
Axis Types: Horizontal (columns), Vertical (rows), Value Ticks (ticks around

clock)

VDanclock maps the data range onto the circumference of the clock face starting with the minimum value at the top
and proceeding in a clockwise direction. For example, if the range is [0,1], the first variable is 0.25, and the second
variable is 0.5, the hour hand points to three o’clock and the minute hand points to six o’clock.

The first variable displays the hour hand, the second variable displays the minute hand.

Variables need not have the same range.

The first variable determines the placement of the tick marks.

VDcolorbar
Displays the color threshold table of the variable as a horizontal legend.
Synopses

GLOBALREF DISPFORM VDcolorbar;

Descriptions
VDcolorbar DV-Draw Graph Type: Color Bar
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 1
History: No Min Samples: 1 Max Samples: 1
Axis Types: Value (x)

The color bar appears at the top edge of the graph area. The height of the color bar is proportional to the width
of the graph area, not to its height. If the graph area is not as high as the color bar, the complete color bar and axis
still display correctly.

This display formatter works best with color thresholds.

The axis displays the value range of the color threshold table. The axis and variable name cannot be turned off.

VDcombos
Combination graph formatters: bar-line, hilo-bar, hilo-line, point-line.
Synopses

GLOBALREF DISPFORM VDbarline;
GLOBALREF DISPFORM VDbarpackedline;
GLOBALREF DISPFORM VDbarplstacked;
GLOBALREF DISPFORM VDhilobar;
GLOBALREF DISPFORM VDhiloline;
GLOBALREF DISPFORM VDptsline;

Descriptions
These display formatters display line graphs combined with bars, horizontal lines, or points.
The colors of the lines, bars, and points are determined by the color or color threshold table associated with the
variables.
When multiple variables are used with different ranges, a second value axis is displayed on the right.

VDbarline DV-Draw Graph Type: Bar Line
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y) (two if range of second variable is different from first)

VDbarline displays the first variable as a bar chart and all subsequent variables as lines. Only the left value axis is
displayed if all variables have the same range. If the second variable (the first to be displayed as a line) has a
different range from the first, a second value axis is displayed on the right. If only one variable is used, this display
formatter displays an overlapping bar and line graph using one variable.

VDbarpackedline DV-Draw Graph Type: Packed Bar-Line
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y) (two if range of second variable is different

from first)

VDbarpackedline displays the first variable as a bar chart and all subsequent variables as lines. There are no gaps
between the bars.
If only one variable is used, this display formatter displays an overlapping bar and line graph using one variable.
The legend of this display formatter lists only the first variable, displayed as a bar. The remaining variables do not
appear in the legend. To list all of the variables in the legend, turn the legend off in the Packed Bar-Line graph and
use the Legend display formatter to display the variables.

VDbarplstacked DV-Draw Graph Type: Stacked Packed Bar-Line
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 32
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y) (two if range of second variable is different from

first)

VDbarplstacked displays each variable pair as a Packed Bar-Line Graph, stacking each graph above the previous
one. The first variable of each pair is displayed as a bar; the second as a line. There is no space between the bars.

The value axis of each graph is displayed on the left side of the graph. The value axis is determined by the first
variable of the pair. If the range of the second variable (the one displayed as a line) is different from the first, a
second value axis is displayed on the right side of that graph.

If the number of variables is odd, the last graph displays an overlapping bar and line graph using one variable.

This display formatter displays a single title and a single legend for the stack of graphs. The legend lists all of the
variables in the stack of graphs.

VDhilobar DV-Draw Graph Type: High Low Bar

Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 13
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x) vs Value (y) (two if range of fourth variable is different

from first)

VDhilobar displays the first three variables as a high-low-close graph and all subsequent variables as bar charts. If
all variables have the same range, only the left value axis is displayed. If the fourth variable (the first one that
generates a bar) has a different range from the first, a second axis is displayed on the right. When fewer than four
variables are used, VDhilobar uses the last variable for the bar and the remaining variables for the high-low graph.

VDhiloline DV-Draw Graph Type: High Low Line
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 13
History: Yes Min Samples: 2 Max Samples:

unlimited
Axis Types: Time (x) vs Value (y) (two if range of fourth variable is different

from first)

VDhiloline displays the first three variables as high-low-close graph and all subsequent variables as lines. If the
fourth variable (the first one that generates a bar) has a different range from the first, a second axis is displayed on
the right. When fewer than four variables are used, VDhilobar uses the last variable for the line and the remaining
variables for the high low graph.

VDptsline DV-Draw Graph Type: Point-Line
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y) (two if range of last variable is different from first)

VDptsline displays all variables as points except for the last variable, which displays as an independent line graph.
If the last variable (the one that generates a line) has a different range from the first, a second axis is displayed on
the right. If only one variable is used, both the line and the points use the same variable and the line is superimposed
on the points.

VDcontours
Contour plot of a matrix variable. Matrix element values are located at the midpoints of the display grid, with
intermediate values mapped between one value and another. Contour lines are drawn through all points where the
values correspond to the threshold values in the color threshold table.

These display formatters work best with a color threshold table.
Synopses

GLOBALREF DISPFORM VDcontour;
GLOBALREF DISPFORM VDfcontour;

Descriptions
VDcontour, VDfcontour DV-Draw Graph Type: Contour, Filled Contour
Variable Shape: matrix only Min Variables: 1 Max Variables: 1
History: No Min Samples: 1 Max Samples: 1
Axis Types: Horizontal (columns), Vertical (rows), Time Tick Label (iteration number)

VDcontour displays a contour plot. If there is no color threshold table, the graph calculates two or more equidistant
contours, depending on the size of the data area.

VDfcontour displays a filled contour plot. The areas between contour lines are filled with the corresponding color
threshold color.

VDcontrollers
Draws a combination of bar graphs and point graphs.

These display formatters can be used with or without range bars. If range bars are used, the first two variables
supply the values for the range bars and subsequent variables provide the values for the graphs. Therefore, three
variables are required when using range bars. If range bars are not used, all variables provide values for the graphs
and only one variable is required. Range bars can be used a s a visual cue that the data is inside or outside a critical
range. The data values used for range bars should be constants.

Each variable can have a separate color threshold table. If range bars are used, the first two color thresholds of every
color threshold table are set equal to the range bar values and subsequent threshold values are ignored. If the range
bars move, so do the color threshold values.

Each bar or symbol displays in a single solid color. If the variable value crosses a threshold value, the whole bar or
symbol is redrawn in the new color.
Synopses

GLOBALREF DISPFORM VDcontroller;
GLOBALREF DISPFORM VDhorizcontroller;

Descriptions
VDcontroller DV-Draw Graph Type: Controller
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 12
History: No Min Samples: 1 Max Samples: 1
Axis Types: Value (y), Time Ticks (range bars using first two variables)

VDcontroller displays each variable as either a vertical bar or as a point, according to the variable’s graph marker
type. If the marker is null, the data value is represented by a vertical bar. If the marker is a symbol, the variable is
represented by a marker with its center point at a vertical position proportional to the variable value.

VDhorizcontroller DV-Draw Graph Type: Horizontal Controller
Variable Shape: scalar, vector,

matrix
Min Variables: 1 Max Variables: 12

History: No Min Samples: 1 Max Samples: 1
Axis Types: Value (y), Time Ticks (range bars using first two variables)

VDhorizcontroller displays each variable as either a horizontal bar or as a point, according to the variable’s graph
marker type. If the marker is null, the data value is represented by a horizontal bar. If the marker is a symbol, the
variable is represented by a marker with its center point at a horizontal position proportional to the variable value.

VDdials
Dial display formatters is which the data values are represented by needles or hands pointing to the corresponding
values. The color of the needle is determined by the color or color threshold table associated with the variable
descriptor.
Synopses

GLOBALREF DISPFORM VDdial;
GLOBALREF DISPFORM VDdial360;
GLOBALREF DISPFORM VDhistdial;

Descriptions
VDdial, VDhistdial DV-Draw Graph Type: Dial or Dial with History
Variable Shape: scalar,

vector, matrix
Min Variables: 1 Max Variables: 5

History: No (Dial), Yes (Dial
w Hist)

Min Samples: 1 Max Samples: 1

Axis Types: Horizontal (columns), Vertical (rows), Value Ticks (dial ticks),
Value Tick Labels (digital value display), Time (iteration number)

VDdial draws a dial encompassing 180 degrees, with the lowest value at the left and the highest value at the right.
The needle points to the corresponding value.

 VDdial360 DV-Draw Graph Type: Dial 360
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 1
History: No Min Samples: 1 Max Samples: 1
Axis Types: Horizontal (columns), Vertical (rows), Value Ticks (dial ticks),

Value Tick Labels (digital value display), Time (iteration number)

VDdial360 draws a dial encompassing 360 degrees. The variable is represented by two hands pointing to the
corresponding value: the small hand codes the most significant digit, the large hand codes the second most
significant digit. For example, if the data range is [0,999], a value of 550 is displayed by a large hand at 6 o’clock
and a small hand halfway between 6 and 7 o’clock.

The data range maps to the circumference with zero at the top. The range should be from 0 to a power of 10.

VDdigit
Digital display formatter.
Synopses

GLOBALREF DISPFORM VDdigits;

Descriptions
VDdigits DV-Draw Graph Type: Digits Graph
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 5
History: No Min Samples: 1 Max Samples: 1
Axis Types: Time Tick Label (iteration number), Horizontal (columns), Vertical (rows)

It is not necessary for all variables to have the same range.

VDdigits displays an array of numbers that displays the actual data in the variable. The digits are displayed in the
largest text size that fits into the display area. Adding text dynamics to text objects can produce the similar results.
You can justify the digits display by calling VPdgdfargs with the “Justify” argument, as shown in the example. The
available options are "Left," "Right," and "Center." The default is "Center." These arguments are case insensitive.

VDdigits uses the data variable range to determine the number of significant digits displayed using the following
criteria:

three (sometimes, four) digits
the number of significant digits in the variable’s minimum value
the number of significant digits in the variable’s maximum value

For example:

If the range is: It must allow at least: If the range is: It must allow at least:
[0,1] 4 digits [0,1001] 4 digits
[0,10] 4 digits [0,10001] 5 digits
[0,100] 3 digits [0,100001] 6 digits

If the digits graph shares a variable with an input object, the range of the digits graph must match the range of the
input variable.
The “C Format” option in the Edit Graph Menu lets you specify the C format for displaying your data. The
conversion character must be preceded by a % sign. The conversion character conforms to the Ansi C standard for
format conversion, except for g, G. Valid conversion characters and the type of data they indicate are:

s character string
c single character
f float, double, decimal notation
e, E float or double converted to scientific notation
g, G converts to e, E or f, depending on whether the graph allows for the number of decimals specified
d, i integer converted to decimal
o unsigned octal
u unsigned decimal
x, Xunsigned hexadecimal
p address

You can only have one conversion character per format string.

When you specify a g, G format in the form x.y, y specifies the number of decimal places, not the total width of the
field.

Other characters in your string appear as you enter them. These include \n for a newline, \t for a tab, and \

octal_digits for special characters.

This display formatter can display data that is outside the variable range.
Diagnostics
This formatter does not display more than six significant digits, so data precision is reduced if the range limits have
more than six significant digits. Room is allowed to display six digits.
Example
This code fragment defines a format to be used by the digits formatter, and displays the digits left justified.

DATAGROUP dgp;
NAME_VALUE_PAIR arg[2];
arg[0].name = "Value Format";
arg[0].value = "%5.2f"; /* C format for digits */
arg[1].name = "Justify";
arg[1].value = "Left";
VPdgdfargs (dgp, &arg, 2);

VDdrawings
VDdrawing runs a view created using DV-Draw. VDmovedrawing rotates, scales, and moves a drawing. These
display formatters are obsolete, but are provided for compatibility for applications that were developed using earlier
releases. The needs addressed by these display formatters can now be handled by object dynamics and active
subdrawings.
Synopses

GLOBALREF DISPFORM VDdrawing;
GLOBALREF DISPFORM VDmovedrawing;

Descriptions
VDdrawing DV-Draw Graph Type: Dynamic Drawing
Variable Shape: scalar, matrix Min Variables: 1 Max Variables: unlimited
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDdrawing binds a view’s data source variables to the graph’s variables in the order in which they appear. The
view is then run in the graph’s viewport. The data group title must be the filename of a view created using DV-Draw.
Note that this display formatter is obsolete. You can achieve many of the same results by enabling the dynamics
within a subdrawing.

If the view variables have default attributes such as color, line type, and symbol type, these attributes are replaced by
the data group variable attributes. Non-default attributes are only replaced by data group variable attributes if the
latter have non-default values. Defaults attributes are: single color, solid line, null symbol; non-default attributes are:
color threshold table, patterned lines, non-null symbols.

The shapes of the variables must match the shapes of the variables in the view.

Unmatched variables are set to constants.

VDmovedrawing DV-Draw Graph Type: Moving Drawing
Variable Shape: scalar Min Variables: 1 Max Variables: 4
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDmovedrawing displays a subdrawing. The first variable determines the rotation angle between -180 and +180
degrees; the second variable determines the scale; the third variable determines the x position; and the fourth
variable determines the y position. Note that this display formatter is obsolete. You can achieve many of the same
results by adding motion dynamics to the subdrawing.
The data group title must be the filename of a drawing created using DV-Draw. The display formatter reads in the
static part of the view, and positions it according to the variables, as described below:

Angle is determined by the first variable. The value variable is mapped from -180 degrees (measured clockwise
from the zero-degree line) to +180 degrees. Thus, a value for the variable that is in the middle of its range is
equivalent to an unrotated drawing.

Scale is determined by the second variable. The value is not normalized to its range before it is used so range is
irrelevant for this variable. The drawing is scaled by the value of this variable. For example, if the variable
value is 1.0, the drawing appears the same size as it was originally drawn in DV-Draw. If the scale is 2.0,
the drawing size is doubled. A good way to set the size of a drawing is to attach the second variable to a
constant and adjust the value of the constant until the drawing appears the correct size.

X and Y coordinates of the drawing’s center point are determined by the third and fourth variables. The range of
these variables maps to the entire range of the graph’s viewport. This means the drawing can extend outside
of the viewport. For the x coordinate, the minimum value is at the left edge of the viewport and the
maximum value is at the right edge of the viewport. For the y coordinate, the minimum is at to the bottom
edge of the viewport and the maximum is at to the top edge. To place the drawing in different portions of
the viewport, you can adjust the ranges of the third and fourth variables. To make the drawing move in the
correct area, you may need to adjust the scale factor in conjunction with the third and fourth variable

ranges.

VDface
Face display formatter.
Synopses

GLOBALREF DISPFORM VDface;

Descriptions
VDface DV-Draw Graph Type: Face Graph
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 5
History: No Min Samples: 1 Max Samples: 1
Axis Types: Time Tick Label (iteration number), Value Tick Label (digital value display)

Horizontal (columns), Vertical (rows)

VDface displays stylized faces with eyes, eyebrows, and mouth. The greater the value, the more the corners of the
mouth point up, the larger the eyes become, and the more the eyebrows rise. The lower the value, the more the
corners of the mouth point down, the smaller the eyes become, and the more the eyebrows tilt down.

The color of the features is determined by the color or color threshold table associated with the variable.
Diagnostics
While this display formatter is similar to a Chernoff face in which multiple variables can be displayed using one
variable per feature, it currently supports only one variable, using the entire face to reflect the variable value.
Although five variables can be used, multiple variables display on top of each other, making the values difficult to
distinguish.

VDfader
Fader display formatter.
Synopses

GLOBALREF DISPFORM VDfader;

Descriptions
VDfader DV-Draw Graph Type: Fader
Variable Shape: scalar Min Variables: 1 Max Variables: 1
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDfader displays the variable value in a format that resembles a stereo equalizer control. The position of the
horizontal bar is proportional to the variable value.

The fader bar color is determined by the color or color threshold table of the variable.

VDfan
Fan display formatter.
Synopses

GLOBALREF DISPFORM VDfan;

Descriptions
VDfan DV-Draw Graph Type: Fan Graph
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 2
History: No Min Samples: 1 Max Samples: 1
Axis Types: Time Tick Labels (iteration number), Value Tick Labels (digital value display),

Horizontal (columns), Vertical (rows)

VDfan displays nested fans that open in a clockwise direction. A fan is a filled arc resembling a pie slice. The
greater the data values, the larger the fan. The lowest value is an empty circle. The highest value shows a full circle
in the colors of the variable. Intermediate values create shapes like pie pieces. Multiple variables display as fans
superimposed on each other with decreasing radii.

The shape of the variable determines the number of fans displayed. Multiple variables display as fans superimposed
on each other with decreasing radii.

The color of the fan is determined by the color or color threshold table associated with the variable.

VDhighlowopenclose
High-low-open-close display formatter.
Synopses

GLOBALREF DISPFORM VDhighlow;

Descriptions
VDhighlow DV-Draw Graph Type: High Low
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 4
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDhighlow draws a high-low-open-close graph such as those used to display stock market data. the first two
variables are displayed as a vertical line between the highest and lowest data values. If a third variable is used, it is
displayed as a horizontal line marking the “close” value.

If only two variables are used, they determine the high and low values of the vertical line, and the second variable
determines the value of the horizontal line. If only one variable is used, only a horizontal line appears.

If a fourth variable is used, it is displayed as a horizontal line marking the “open” values. In this case, the vertical
line is located in the center of the time slot, with the two horizontal lines on either side.

The color of the vertical bar is determined by the color or color threshold table associated with the first variable.

The value axis is labeled using the range of the first variable only.

VDhorizon
Artificial horizon display formatter.
Synopses

GLOBALREF DISPFORM VDhorizon;

Descriptions
VDhorizon DV-Draw Graph Type: Artificial Horizon
Variable Shape: scalar, vector,

matrix
Min Variables: 1 Max Variables: 4

History: No Min Samples: 1 Max Samples: 1
Axis Types: Roll, Pitch

VDhorizon draws a horizon line, runway, the representation of airplane wings, and a track circle within a 360-
degree dial-shaped graph. Four variables can be used. Their values determine the roll, pitch, roll error, and pitch
error respectively. Roll error and pitch error are optional.

The first variable value determines the roll angle. The roll value is represented by rotation of the horizon, sky,
runway, pitch axis, and a red arrowhead indicator. A positive roll value rotates these objects counter-clockwise; a
negative value rotates them clockwise.

If the range of the roll variable values is smaller than -180 to 180, the tick labels are limited correspondingly. If the
range is greater than -180 to 180, values wrap around the dial. For example, a value of 240 appears as -120. Values
outside the range are clipped to the range limits.

The second variable determines the pitch angle. The pitch value is represented by the position of the horizon with
respect to the pitch axis. Positive values move the horizon down the scale; negative values move it up.

The maximum pitch value is mapped to the bottom of the scale (100% sky and 0% ground); the minimum pitch
value is mapped to the top of the scale (0% sky and 100% ground) with zero at the mid-point. Tick marks are drawn
along the pitch axis.
The following VPdgcontext flags control the roll and pitch axis ticks and tick labels. To display, set the flag value to
YES; to turn the ticks or tick labels off, set the flag value to NO.

Roll axis ticks: V_FROLL_TICS
Roll axis tick labels: V_FROLL_LABEL_TICS
Pitch axis ticks: V_FPITCH_TICS
Pitch axis tick labels: V_FPITCH_LABEL_TICS

The third variable value determines the roll error. The roll error value is represented by a short line perpendicular to
the dial’s horizontal axis. The roll error variable uses the range of the roll variable. The range is mapped to the
horizontal axis, with zero in the center. Positive values move the line proportionally to the left; negative values move
it to the right.

The fourth variable value determines the pitch error. The pitch error value is represented by a short line
perpendicular to the dial’s vertical axis. The pitch error variable uses the range of the pitch variable. The range is
mapped to the vertical axis, with zero in the center. Positive values move the line down proportionally, and negative
values move it up.

If a variable range is not symmetrical around zero, this display formatter interprets it as if it were, using the larger
absolute value for both the positive and negative limits. For example, a variable range of -45 to 90 is interpreted as -
90 to 90.

VDindicator
Indicator displaying current variable value as a marker.
Synopses

GLOBALREF DISPFORM VDindicator;

Descriptions
VDindicator DV-Draw Graph Type: Indicator
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (y), Value (x)

The horizontal position of the marker is proportional to the variable value. The vertical position of each marker
represents a new time sample, not a spatial (x,y) value. Multiple variables overlap in the same slot space. If the
graph cannot display all the samples at the same time, the markers wrap around from top to bottom.

VDknob
Knob display formatter.
Synopses

GLOBALREF DISPFORM VDknob;

Descriptions
VDknob DV-Draw Graph Type: Knob
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 1
History: No Min Samples: 1 Max Samples: 1
Axis Types: Value Tick Labels (digital value display)

Horizontal (columns), Vertical (rows)

VDknob draws a knob with a 270 degree travel. The lowest value is in the lower left, the highest in the upper right.

The knob color is determined by the color or color threshold table associated with the variable. On a monochrome
display, the knob color does not change if a color threshold table is associated with the variable.

The object foreground color determines the color of the background panel. If the value axis ticks are “on” to show
value markings around the rim of the knob, the object foreground color must contrast well with black to make the
markings visible.
See Also
VDmeter

VDlegend
Legend display formatter.
Synopses

GLOBALREF DISPFORM VDlegend;

Descriptions
VDlegend DV-Draw Graph Type: Legend Graph
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 20
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDlegend draws a legend listing the name and color threshold table of each variable attached to the graph. The
legend is static; it is drawn once and is not updated while running. The legend appears as a centered column in the
viewport. VDlegend scales the legend to fit into the viewport. There is no context except the outline.
See Also
VDtext

VDlines
Line display formatters.
Synopses

GLOBALREF DISPFORM VDline;
GLOBALREF DISPFORM VDlinedist;
GLOBALREF DISPFORM VDlinefill;
GLOBALREF DISPFORM VDlinefstacked;
GLOBALREF DISPFORM VDlinestacked;
GLOBALREF DISPFORM VDstep;

Descriptions
The line formatters draw a line graph for each variable, starting at the left edge of the graph. Each time these display
formatters are invoked, they put the next data value into the next available slot. When the data area fills up, the
display wraps around to the beginning of the data viewport or scrolls left, depending on the value set by
VPdgscroll_amount. If the scroll amount is greater than zero, the graph scrolls to the left. The default is to wrap
around to the beginning.

The value axis displays the range of the first variable.

The time and value grids are supported.

VDline DV-Draw Graph Type: Line Graph
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDline displays a simple line graph

The line color is determined by the color or color threshold table associated with the variable.

Different line types can be assigned to different variables to make it easier to distinguish between them.

VDlinedist DV-Draw Graph Type: Filled Line Distribution
Var Shape: scalar, vector,

matrix
Min Variables: 1 Max Variables: 10

History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDlinedist displays a filled line graph in which the range of the graph equals the range of the attached variables.

All variables must have the same range. The range of the graph equals the range of the attached variables. The sum
of the variable values for each sample should not exceed the maximum range value. For example, if a graph had
three variables with a range of 0 to 10, the range of the graph is 0 to 10. A given sample of the three variables might
have values of 2, 3, and 5 or 2, 3, and 4 but not 2, 3, and 6, since the sum is greater than the range of the graph.

If the minimum range value is not zero, the value axis ticks are only accurate for reading the total of the variables, at
the top line of the filled line graph.

See also VDlinefill.

VDlinefill DV-Draw Graph Type: Filled Line
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDlinefill displays a line graph for each variable and fills below the line with the variable color. The line graphs are
stacked vertically, adding each variable value to the sum of the values beneath it. The first variable is on the bottom,
the last variable on the top. The height of the line graph is proportional to the sum of the values of all the variables.

The color of the area below each line is determined by the color associated with the variable. If the variable has a
color threshold table, the area is divided into sections of different colors to match the threshold table.

Variables do not need to have the same range. If the minimum range value is not zero, the value axis ticks are only
accurate for reading the total of the variables, at the top line of the filled line graph.

VDlinefstacked DV-Draw Graph Type: Stacked Filled Line Graph
Var Shape: scalar,

vector,
matrix

Min Variables: 1 Max Variables: 10

History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDlinefstacked displays each variable as a Filled Line Graph, stacking each graph above the previous one.

The value axis of each graph is displayed on alternate sides of the graphs, starting at the left side of the bottom
graph.

This display formatter displays a single title and a single legend for the stack of graphs. The legend lists all of the
variables in the stack of graphs.

VDlinestacked DV-Draw Graph Type: Stacked Line Graph
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 16
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDlinestacked: displays each variable as a Line Graph, stacking each graph above the previous one.

The value axis of each graph is displayed on alternate sides of the graphs, starting at the left side of the bottom
graph.

This display formatter displays a single title and a single legend for the stack of graphs. The legend lists all of the
variables in the stack of graphs.

Different line types can be assigned to the variables to make it easier to distinguish between them.

VDstep DV-Draw Graph Type: Step Graph
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDstep displays each variable element as a horizontal line connected to the adjacent values by vertical lines.
Different line types can be assigned to different variables to make it easier to distinguish between them.

Each horizontal line is plotted together with the following vertical line. Since the vertical line cannot be plotted until
the next value is known, values are plotted with a delay of one time slot.
Diagnostics
Buffering the data so the buffered dimension equals the number of slots updates the display most efficiently. For
additional information, see VPvddim. For example:

VPvddim (vdp, 10, 1, 1);
VPdgslots (dgp, 10);

See Also
VDlinefill, VDstrip

VDmeter
Meter display formatter.
Synopses

GLOBALREF DISPFORM VDmeter;

Descriptions
VDmeter DV-Draw Graph Type: Meter
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 1
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Horizontal (columns), Vertical (rows), Value Ticks (ticks around meter), Value

Axis Labels (labels on ticks)

VDmeter draws a simulated meter with the lowest value at the left and the highest value at the right. The variable is
represented by a needle pointing to the corresponding value. The meter is similar to the dial, but uses a logarithmic
scale mapped to a 120 degree arc.

When the number of samples is greater than one, a dot appears at the tip of the meter needle. As the value changes,
the graph leaves the dot of each value as a history of the values. The slot count specifies the number of dots
displayed.

The needle color is determined by the color or color threshold table associated with the variable.
See Also
VDdial, VDhistdial, VDknob

VDpie
Pie chart display formatter.
Synopses

GLOBALREF DISPFORM VDpie;

Descriptions
VDpie DV-Draw Graph Type: Pie Chart
Variable Shape: scalar Min Variables: 1 Max Variables: 10
History: No Min Samples: 1 Max Samples: 1
Axis Types: Time Tick Labels (iteration number),

Value Tick Labels (displays digital value inside slice)

VDpie is a standard pie chart that plots the ratios of several different variables. This display only makes sense if
more than one variable is associated with the data group. If value labeling is turned on, each pie slice is labeled with
the percentage of the total value corresponding to that variable’s value. The routine totals values for all the variables,
and displays a pie slice of a size proportional to the ratio:

variable_value : total_value

Each pie slice color is determined by the color or color threshold table associated with the variable.

Labels use the current foreground color of the formatter.

VDpoint
Point graph display formatter.
Synopses

GLOBALREF DISPFORM VDpoints;

Descriptions
VDpoints DV-Draw Graph Type: Points Chart
Variable Shape: scalar Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDpoints displays a points graph with wrap-around. The graph starts at the left boundary of the first slot and stops
at the right boundary of the last slot, so there n points are plotted before wrap-around, where n is the number of slots.
The height of the point is proportional to the value of the variable being plotted. If the variable has a marker
associated with it, that marker is used to display the data.

Each time the display formatter is invoked it puts the next data value into the next available slot. When the data area
fills up, the graph wraps around to the beginning of the data viewport or scrolls left, depending on the value set by
VPdgscroll_amount. If the scroll amount is greater than zero, the graph scrolls to the left. The default is to wrap
around to the beginning.

The value axis is labeled using the range of the first variable only.

The time and value grids are supported.

Each marker color is determined by the color or color threshold table associated with the variable.

VDprimitives
Display formatters that use an array of primitive shapes, changing their size and color to reflect data values.
Synopses

GLOBALREF DISPFORM VDbox;
GLOBALREF DISPFORM VDcircle;
GLOBALREF DISPFORM VDtriangle;

Descriptions
These display formatters provide no context except for the outline.

The shape of the variable determines the number of primitives displayed. If the variable is scalar, the formatter
draws the largest shape possible in the specified viewport.

The first variable determines the color. The color of each shape is determined by the color or color threshold table
associated with the variable.

Remaining variables determine the dimensions of the primitive. The maximum value of a dimension variable
produces the largest size possible. If a variable is missing, the maximum value is used in its place.

VDbox DV-Draw Graph Type: Box
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 3
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDbox draws a rectangle using up to three variables. The first variable determines the color of the rectangle; the
second variable determines the width; and the third variable determines the height.

VDcircle DV-Draw Graph Type: Circle
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 2
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDcircle draws a circle using up to two variables. The first variable determines the color and the second determines
the radius of the circle.

VDtriangle DV-Draw Graph Type: Triangle
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 3
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDtriangle draws a primitive triangle using up to three variables. The first variable determines the color; the second
determines the width of the triangle at its base; and the third determines the height of the triangle.

VDradials
Radial strip chart display formatters.
Synopses

GLOBALREF DISPFORM VDne_radial;
GLOBALREF DISPFORM VDradial;

Descriptions
Radial formatters plot a line graph in polar coordinates. The graph starts at the 3 o’clock position and moves
counter-clockwise.

The variable value is mapped to the distance from the center shape to the outside of the circle, with the maximum
value at the outside.
The number of time slots is mapped to the circumference of the circle and formatter plots that number of points per
revolution, connecting the points with linear arcs. A linear arc is a linear function in polar coordinates, which is a
function of the form:

radius = constant * angle + constant2

The line color is determined by the color or color threshold table associated with the variable.

The value axis displays the range of the first variable.

VDne_radial DV-Draw Graph Type: Radial Graph, no erase
Variable Shape: scalar Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time Tick Labels (iteration number), Value (y)

VDne_radial (ne = no erase) does not erase previous values as it wraps around, plotting new values together with
old values. This plots faster than VDradial. It is useful for cyclic data.

If the display formatter is redrawn by TdpRedraw, TscRedraw, or any other method of redrawing, only the most
recent number of time slots specified by VGdgslots are redrawn. Previous values are not preserved.

VDradial DV-Draw Graph Type: Radial Graph
Variable Shape: scalar Min Variables: 1 Max Variables: 10
History: No Min Samples: 1 Max Samples: unlimited
Axis Types: Time Tick Labels (iteration number), Value (y)

VDradial erases old data in each time slot when it wraps around to that time slot again.

VDscatters
Scatter plot display formatters
Synopses

GLOBALREF DISPFORM VDimpulse;
GLOBALREF DISPFORM VDimpulseto0;
GLOBALREF DISPFORM VDscatter;

Descriptions
For each pair of variables, these formatters plot a marker whose x coordinate is the value of the first variable and
whose y coordinate is the value of the second variable. These formatters use an even number of variables; unpaired
variables are ignored. If either value in a variable pair is out of range, the marker falls outside the data viewport and
is not drawn. In the impulse graphs, if a point is above the range, the marker is not drawn, but the vertical line is
drawn from the horizontal axis to the top of the data viewport. If a point is below the given range, the marker is not
drawn. In the impulse graph, no line is drawn; in the impulse to zero graph, the line is drawn from the horizontal
axis to the bottom of the data viewport.

The legends, markers, and vertical lines (if used in the impulse graphs) use the color associated with the second
variable of each pair. If the variable has a color threshold table, the color is determined by the variable value and the
corresponding color in the threshold table. Vertical lines are divided into sections of different colors according to the
variable value and the corresponding color in the threshold table.

This display formatter displays the x and y value axes. The time value appears as a numerical value centered below
the value axis.

Only the value grid is supported.

VDimpulse DV-Draw Graph Type: Impulse Graph
Variable Shape: scalar Min Variables: 2 Max Variables: 20
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time Tick Labels (iteration number),

Value (x=first variable range, y=second variable range)
VDimpulse plots a scatter plot with vertical lines from each point to the horizontal axis.

VDimpulseto0 DV-Draw Graph Type: Impulse to Zero
Variable Shape: scalar Min Variables: 2 Max Variables: 20
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time Tick Labels (iteration number),

Value (x=first variable range, y=second variable range)
VDimpulseto0 plots a scatter plot with a vertical line from each marker to the zero line.

VDscatter DV-Draw Graph Type: Scatter Plot
Variable Shape: scalar Min Variables: 2 Max Variables: 20
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time Tick Labels (iteration number),

Value (x=first variable range, y=second variable range)
VDscatter plots a scatter plot.
Diagnostics
To update the display most efficiently, set the size of the variable descriptor buffer equal to the number of slots. For
example:

VPvddim (vdp, 10, 1, 1);
VPdgslots (dgp, 10);

See Also

VDweb, VPvddim

VDsize
Size display formatter.
Synopses

GLOBALREF DISPFORM VDsize;

Descriptions
VDsize DV-Draw Graph Type: Size Graph
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 3
History: No Min Samples: 1 Max Samples: 1
Axis Types: Time Tick Labels (iteration number), Value Tick Labels (digital value display), Horizontal

(columns), Vertical (rows)

VDsize displays up to three variables as sets of geometric shapes whose sizes change as the variable values change.
The first variable appears as an unfilled rectangle, the second as an unfilled diamond superimposed on the rectangle,
and the third as an unfilled star superimposed on the diamond and rectangle. The default shapes can be replaced by
associating markers with the variables. If there is only one variable, the geometrical shape is a filled rectangle.

If the value tick labels are on, the data values are displayed digitally directly above the shape sets.

The color of each shape is determined by the color or color threshold table associated with the variable.

VDspectros
Displays a colored bar for each sample of a vector variable. The bar is divided vertically into the number of elements
of the variable and each region of the bar is colored to reflect the value of the element according to the color
threshold table. If the variable is scalar, each bar is a single solid color. You must use one of the stacked display
formatters if you are displaying more than one variable. The interpolated display formatters display gradual
transitions between the color regions.
Synopses

GLOBALREF DISPFORM VDspectro;
GLOBALREF DISPFORM VDspectrointp;
GLOBALREF DISPFORM VDspectrointpstkd;
GLOBALREF DISPFORM VDspectrostacked;

Descriptions
These display formatters work best with a vector variable that has a color threshold table. Matrix data is not
meaningful with this display formatter.

The legend is a color bar that shows the colors corresponding to the threshold values. The variable values are
mapped uniformly to the axis of the color bar, not only to the threshold values.

The data for the first sample appears in the leftmost slot of each graph. When the data area fills up, the graph wraps
around to the beginning of the data viewport or scrolls left, depending on the value set by VPdgscroll_amount. If the
scroll amount is greater than zero, the graph scrolls to the left. The default is to wrap around to the beginning.

The vertical axis displays the numbers of the elements in a sample. For example, the vertical axis of a vector
variable with a length of 8 has values from 1 to 8. The tick marks appear at the center of each element’s height. The
value of each element is indicated by the color of the rectangle, not by its vertical position. This axis is called the
value axis in DV-Draw for compatibility with previous releases, but is actually the first spatial axis. To set this axis
label using DV-Tools, you must call VPdgaxlabel using the V_FIRST_AXIS flag instead of calling VPvdvallabel.

The maximum length of a vector variable is 250.

VDspectro DV-Draw Graph Type: Spectro Graph
Variable Shape: scalar, vector Min Variables: 1 Max Variables: 1
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x), Vertical (y=number of elements in sample)

VDspectro displays a color bar for a single vector variable. The legend color bar shows the color threshold table and
range of the variable.

VDspectrointp DV-Draw Graph Type: Smoothed Spectro
Variable Shape: scalar, vector Min Variables: 1 Max Variables: 1
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x), Vertical (y=number of elements in sample)

VDspectrointp displays a color bar with interpolated color transitions between the elements in the vector variable
and between the samples. The color transitions are drawn between neighboring values using the color thresholds.

The legend color bar shows the color threshold table and range of the variable.

This display formatter uses raster operations to interpolate the data, and therefore should not be obscured. It clips
correctly only when the scroll amount is 0. If the display device does not support rasterops, the display formatter
behaves like VDspectro and there is no interpolation.

VDspectrointpstkd DV-Draw Graph Type: Stacked Smoothed Spectro
Variable Shape: scalar,

vector
Min Variables: 1 Max Variables: 16

History: Yes Min Samples: 1 Max Samples: unlimited

Axis Types: Time (x), Vertical (y=number of elements in sample)

VDspectrointpstkd displays each variable as an Interpolated Spectro Graph, stacking each graph above the
previous one. Each graph displays an interpolated colored bar for each data sample of a vector variable. The color
transitions are drawn between neighboring values using the color thresholds.

The vertical axis of each graph is displayed on alternate sides of the graphs, starting at the left side of the bottom
graph.

This display formatter displays a single title and legend for the stack of graphs.

The legend color bar shows the color threshold table and range of the last variable. Since there is only one legend
color bar for all variables, the variable of each graph should have the same color threshold table.

This display formatter uses raster operations to interpolate the data, and therefore should not be obscured. It clips
correctly only when the scroll amount is 0. If the display device does not support rasterops, the display formatter
behaves like VDspectrostacked and there is no interpolation.

VDspectrostacked DV-Draw Graph Type: Stacked Spectro
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 16
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x), Vertical (y=number of elements in sample)

VDspectrostacked displays each variable as a Spectro Graph, stacking each graph above the previous one. Each
graph displays a colored bar for each data sample of a vector variable.

The vertical axis of each graph is displayed on alternate sides of the graphs, starting at the left side of the bottom
graph.

This display formatter displays a single title and legend for the stack of graphs.

The legend color bar shows the color threshold table and range of the last variable. Since there is only one legend
color bar for all variables, the variable of each graph should have the same color threshold table.

VDstrips
Strip chart display formatters.
Synopses

GLOBALREF DISPFORM VDstrip;
GLOBALREF DISPFORM VDstripras;
GLOBALREF DISPFORM VDstripstacked;
GLOBALREF DISPFORM VDvstrip;
GLOBALREF DISPFORM VDvstrip_r;
GLOBALREF DISPFORM VDwaterfall;
GLOBALREF DISPFORM VDwaterfall_r;

Descriptions
The value axis displays the range of the first variable.

The time and value grids are supported.

The number of samples specifies the number of history values displayed.

The line color is determined by the color or color threshold table associated with the variable.

Strip charts are slower than line graphs because they redraw the entire plot and time axis for each sample. To
increase the speed, turn the time axis label off or use a raster version of the strip chart.

The raster versions take and display raster images to scroll the data, and therefore should not be obscured or partially
clipped. Using raster images makes the raster versions more efficient than non-raster strip charts, which redraw all
the data before plotting each sample. If the display device does not support rasterops, the raster versions behave like
the non-raster versions and there is no improvement in efficiency.

Plotting strip charts overloads the plotter. Before you send a strip chart to the plotter, convert it to a line chart.

VDstrip DV-Draw Graph Type: Strip Chart
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDstrip displays a scrolling line graph. VDstrip always puts the most recent value at the right end of the display
area, moving the older data points to the left.

A more efficient strip chart can be created by using a line graph with a scroll amount of 1 or more. For additional
information, see VDline.

VDstripras DV-Draw Graph Type: Raster Strip Chart
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 3 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDstripras displays a scrolling line graph, taking a raster image of current data and shifting the image before
plotting each new sample. VDstripras always puts the most recent value at the right end of the display area, moving
the older data points to the left.

VDstripstacked DV-Draw Graph Type: Stacked Strip Chart
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 16
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDstripstacked displays each variable as a Strip Chart, stacking each graph above the previous one. Each graph
plots a line graph that begins at the right edge of the graph and scrolls toward the left of the graph. The most recent
value appears at the right edge of the graph and the history shifts continually to the left.

The value axis of each graph is displayed on alternate sides of the graphs, starting at the left side of the bottom
graph.

This display formatter displays a single title and a single legend for the stack of graphs. The legend lists all of the
variables in the stack of graphs.

Different line types can be assigned to different graphs to make it easier to distinguish between them.

VDvstrip DV-Draw Graph Type: Vertical Strip Chart
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDvstrip displays a line graph that scrolls up. VDvstrip always puts the most recent value at the bottom of the
display area, moving the older data points to the top. The time axis is displayed on the left side of the graph and the
value axis is displayed at the bottom.

VDvstrip_r DV-Draw Graph Type: Vertical Raster Strip Chart
Var Shape: scalar, vector,

matrix
Min Variables: 2 Max Variables: 10

History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: Time (x) vs Value (y)

VDvstrip_r displays a line graph that scrolls up, taking a raster image of current data and shifting the image before
plotting each new sample. VDvstrip_r always puts the most recent value at the bottom of the display area, moving
the older data points to the top. The time axis is displayed on the left side of the graph and the value axis is displayed
at the bottom.

VDwaterfall DV-Draw Graph Type: Waterfall
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (y) vs Value (x)

VDwaterfall displays a line graph that scrolls down. VDwaterfall always puts the most recent value at the top of the
display area, moving the older data points to the bottom. The time axis is displayed on the left side of the graph and
the value axis is displayed at the bottom.

VDwaterfall_r DV-Draw Graph Type: Raster Waterfall
Var Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 10
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (y) vs Value (x)

VDwaterfall_r displays a line graph that scrolls down, taking a raster image of current data and shifting the image
before plotting each new sample. VDwaterfall_r always puts the most recent value at the top of the display area,
moving the older data points to the bottom. The time axis is displayed on the left side of the graph and the value axis
is displayed at the bottom.

VDsurface
Three-dimensional surface graph.
Synopses

GLOBALREF DISPFORM VD3dsurface;

Descriptions
VD3dsurface DV-Draw Graph Type: Surface Graph
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 1
History: No Min Samples: 1 Max Samples: 1
Axis Types: Value (y), Time Tick Label (iteration number)

VD3dsurface displays a three-dimensional surface with the hidden lines removed.

The grid represents the data array positions; the position of each surface point above the grid corresponds to the
element’s location in the data array. The height of a point on the surface is proportional to the data value. The origin
is in the lower right corner.

This display formatter works best with matrix data. A scalar variable plots as a plane.

The color of the surface lines is determined by the color or color threshold table associated with the variable.

VDtexts
Displays the contents of one or more text variables, adding each successive iteration of strings below the previous
strings.
Synopses

GLOBALREF DISPFORM VDmessage;
GLOBALREF DISPFORM VDtext;

Descriptions
VDmessage DV-Draw Graph Type: Message Graph
Variable Shape: text, scalar Min Variables: 1 Max Variables: 18
History: Yes Min Samples: 1 Max Samples: unlimited
Axis Types: None

VDmessage can only display text variables. To display numerical data, the data must be in text format. Non-text
variables can be used to control aspects of the message display.

Multiple text variables display side by side. The first iteration of all text variables appear on the first line, the second
iteration on the second line, etc. To separate entries on the same line, space must be included between items in the
text files.

The number of samples specifies the number of text values in the current sampling.

The first scalar variable specifies which iteration of text values to display at the top of the graph from among the
current sampling. If the scalar value is more than 1, each text value appears at the top of the graph then scrolls off
the top until the specified iteration is displayed. That iteration remains at the top of the graph and the remaining
values in the current sampling appear below it.

The first scalar variable can be used to scroll backward in the list, especially if you use an input object to control the
iteration number by connecting it to the first scalar variable. The range of the input object should be equivalent to
the number of samples specified.

If the graph is not large enough to display all the samples, it only displays enough samples to fill the graph. To make
the graph scroll upward to display the latest iterations, use a scalar value of -1. In this case, the scalar value does not
control which text value appears at the top of the graph, but only makes the text values scroll up with every iteration
after the specified number of samples is displayed.

The second scalar variable controls the text size. The text size variable should be a constant. If it is not a constant,
the graph uses only the first value to determine text size. The text size value must be in the range of 1 to 4, with 1
representing the smallest text size and 4 representing the largest.

This display formatter can use a maximum number of 16 text variables and 2 numerical variables.

VDtext DV-Draw Graph Type: Text
Variable Shape: text, scalar Min Variables: 1 Max Variables: 2
History: No Min Samples: 1 Max Samples: 1
Axis Types: None

VDtext displays text in the center of the viewport.

To display dynamic text, the first variable must be a text variable. A second variable of any type can be added to
determine the text color. If you only use a text variable, the text appears in an arbitrary color.

If the first variable is not a text variable, only the graph title appears, centered in the viewport.

If the first variable is a text variable, the title is justified in the upper left corner of the viewport, and the text from
the text variable is vertically centered along the left edge.

The graph title uses the graph foreground color.

VDtime
GraphsVDtime with time-stamped values.
Synopses

GLOBALREF DISPFORM VDrtline;
GLOBALREF DISPFORM VDrtstep;

Descriptions
VDrtline, VDrtstep DV-Draw Graph Type: see routines listed below
Variable Shape: scalar,

vector
Min Variables: 3 Max Variables: 102

History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time (x) (first two variables) vs Value (y)

These display formatters draw either a line or stacked step graph using a time axis that displays a day counter and
time stamp.

The first variable displays as a day counter; the second variable displays as a time stamp representing the time
elapsed since the beginning of the day in tenths of milliseconds. The first two variables must be in binary ULONG
format. Subsequent variables can be in any DataViews data format and are plotted as lines. Up to ten variables can
be displayed as data.

Typically the data used in this graph has already been collected; the time stamp data represents the times when data
was taken rather than the current system time.

The first two variables must both have values that only increase or only decrease. Values for the time stamp (the
second variable) need not represent regular intervals; the time axis is labeled in regular intervals regardless.

The real-time graphs display data differently from other graphs that display time series data such as bar charts and
line graphs. Instead of displaying one data value per slot, the real-time graphs plot the data at the proper place along
the time axis based on the value of the time stamp (the second variable). Since each sample of a data variable is
paired with the corresponding time stamp, the horizontal gap between data values can vary. Multiple data points can
even be plotted at the same point in time if the same time stamp value occurs more than once.
Because of this different approach to plotting data, some features of the real-time graphs are controlled differently
from those of other graph types:

The time span displayed along the time axis is controlled by a variable range, not by the slot count.
The scroll amount is controlled by the slot count and the scroll amount.
The format for the time axis tick labels is controlled by a variable range.
The number of data points redrawn after an expose event is controlled by the slot count.

Time span. The range of the second variable controls the span of time displayed along the time axis. The basic unit
is a tenth of a millisecond. For example, a range of [0,100] displays 100 tenths of milliseconds in 10 intervals of 10
milliseconds each. A range of [0,50] displays 50 tenths of milliseconds in 5 intervals of 10 milliseconds each.

Scroll amount. The graph scrolls only when it must make room for new time stamp data. The slot count and scroll
amount determine the amount scrolled. For example, if the slot count is 20 and scroll amount is 4, the graph scrolls
20% of the time axis. To eliminate scrolling, make the scroll amount greater than the slot count. In this case, all old
data is erased at once and the new data is drawn starting at the left.

You can think of the slot count as an estimate of the number of data points that will be displayed in the time span.
Then the scroll amount specifies the estimated number of data points to scroll by.

Time axis tick labels. The range of the second variable also controls the format for the time axis tick labels. For
example, a range of [0,100] displays time axis labels in the format SS.TTT.T (seconds.milliseconds.tenths of
milliseconds). A range of [0,10000] displays time axis labels in the format MM:SS.TTT
(minutes:seconds.milliseconds). A range of [0,1000000] displays time axis labels in the format HH:MM:SS

(hours:minutes:seconds).

Data points plotted on an expose. The slot count controls the number of data points that can be redisplayed on an
expose event. However, some data may be lost on the redisplay if the graph was displaying more data points than
estimated in the slot count.

Display direction. The real-time graphs let you reverse the direction of the data display. Note that the time stamps
must correspond to the graph direction, so if you change the direction of the graph, the time stamps must reverse
direction at the same time. Time stamps must be increasing whenever the graph is going forward, and must be
decreasing whenever the graph is going backward.
To reverse the direction, send the VDTIME_CHANGE_DIRECTION flag to the graph using VPdgdfmessage. For
example:

#define VDTIME_CHANGE_DIRECTION 1
VPdgdfmessage (dgp, VDTIME_CHANGE_DIRECTION, NULL);

You can send this message before the first call to TdpDraw.

To change the direction back again, repeat the call to VPdgdfmessage.

Changing direction resets the graph and all history is lost.

Units per second. The real-time graphs let you change the number of units per second to match your data
resolution.
To change the units per second, send the VDTIME_UNITS_PER_SECOND flag to the graph using VPdgdfmessage.
For example:

#define VDTIME_UNITS_PER_SECOND 2
VPdgdfmessage (dgp, VDTIME_UNITS_PER_SECOND, (ULONG) value);

where value represents the new number of units per second. Values that work best include 10, 100, 10,000. The
default is 10,000. When you change the number of units per second, you do not have to change the range of the
second variable, which controls the span of time displayed along the time axis; this is handled internally by the
graph.

You can send this message before the first call to TdpDraw.

VDrtline draws a line graph with a time axis that displays a day counter and time stamp. The corresponding DV-
Draw graph type is Real Time Line Graph.

VDrtstep displays each variable element as a step graph, stacking each graph above the previous one. The time axis
displays a day counter and time stamp. The corresponding DV-Draw graph type is Real Time Step Graph.

VDvectors
Vector plot display formatters.
Synopses

GLOBALREF DISPFORM VDflowfield;
GLOBALREF DISPFORM VDvector;

Descriptions
Any variables not specified are set to zero.

For the angles to be meaningful, the variable ranges should be symmetrical around zero.

The color of each vector is determined by the color or color threshold table associated with the last variable.

VDflowfield DV-Draw Graph Type: Flowfield
Variable Shape: scalar, vector, matrix Min Variables: 3 Max Variables: 5
History: No Min Samples: 1 Max Samples: 1
Axis Types: Time Tick Labels (iteration number),

Value (x=first variable range, y=second variable range)

VDflowfield displays up to five variables as points, each with a vector attached. A minimum of three variables is
required to supply the x and y coordinates of the points and the length of the vectors. The first variable provides the
x coordinate of each point; the second provides the y value. The third variable provides the x component of the
vector, and the forth variable, if used, provides the y component of the vector. Each vector is drawn with its
corresponding plotted point as its origin. The fifth variable, if used, provides the z component of the vector. The z
component, if used, is displayed as color changes using the color threshold table of the fifth variable.

The third, fourth, and fifth variables should all have the same range.

For more information about the component display formatters, see VDscatter and VDvector.

VDvector DV-Draw Graph Type: Vector Graph
Variable Shape: scalar, vector, matrix Min Variables: 1 Max Variables: 3
History: No Min Samples: 1 Max Samples: 1
Axis Types: Time Tick Label (iteration number), Horizontal (columns), Vertical (rows)

VDvector plots a three-dimensional vector field. The origin of each vector is constant. For each vector, the first
variable provides the x component, the second variable provides the y component, and the third variable provides
the z component. The z component is represented by the color of the line.
See Also
VDscatter

VDwebs
Scatter plot display formatter with points connected.
Synopses

GLOBALREF DISPFORM VDweb;
GLOBALREF DISPFORM VDmultiyweb;

Descriptions
The value axis displays the range of the second variable.

Only the value grid is supported.

The legend and marker use the color associated with the second variable of each pair. If the variable has a color
threshold table, the color is determined by the variable value and the corresponding color in the threshold table.

Different markers can be assigned to different variables to make it easier to distinguish between them.

VDmultiyweb DV-Draw Graph Type: Multiple-Y Web
Variable Shape: scalar, vector, matrix Min Variables: 2 Max Variables: 20
History: Yes Min Samples: 2 Max Samples:

unlimited
Axis Types: Time Tick Label (iteration number),

Value (x=first variable range, y=second variable range)

VDmultiyweb draws a Scatter Plot with lines connecting each point to the adjacent points and multiple vertical
value axes. For each pair of variables, the graph plots a marker whose x coordinate is the value of the first variable
and whose y coordinate is the value of the second variable. This graph uses an even number of variables; unpaired
variables are ignored.

The y axis is displayed for each variable pair. The values are determined by the second variable of each pair. The
axis color matches the color of the variable. The axis is displayed for every variable pair even if the variable range is
not unique.

Each y axis is labeled with the name of the second variable in the pair. If the second variable in any pair has been
given a null name using VPvdvarname, and a vertical axis label has been assigned using VPdgaxlabel, the vertical
axis label is used to label the whole set of vertical axes. Normally this vertical axis label is ignored.

Different line types can be assigned to different variables to make it easier to distinguish between them.

This display formatter displays the x and y value axes. The time value appears as a numerical value centered below
the value axis.

VDweb DV-Draw Graph Type: Web Chart
Variable Shape: scalar Min Variables: 2 Max Variables: 20
History: Yes Min Samples: 2 Max Samples: unlimited
Axis Types: Time Tick Label (iteration number),

Value (x=first variable range, y=second variable range)

VDweb displays a Scatter Plot with lines connecting each point to the adjacent points. For each pair of variables, the
graph plots a marker whose x coordinate is the value of the first variable and whose y coordinate is the value of the
second variable. This graph uses an even number of variables; unpaired variables are ignored.

This display formatter displays the x and y value axes. The time value appears as a numerical value centered below
the value axis.
Diagnostics
To update the display most efficiently, set the size of the variable descriptor buffer equal to the number of slots. For
example:

VPvddim (vdp, 10, 1, 1);
VPdgslots (dgp, 10);

See Also
VDscatter, VPvddim, DataViews Technical Note #4, Using Vector and Flowfield Formatters.

VG Routines
Vg Routines

Routines that get information from data group and variable descriptor data structures.

VG Modules

#include "std.h"
#include "dvstd.h"
#include "VGfundecl.h"

VGdg Gets basic information from a data group.
VGdgcolor Gets the color information from a data group.
VGdgcontext Gets the context information from a data group.
VGdgdf Gets information related to the display formatter from a data group.
VGdgdfargs Gets the display formatter arguments to a data group.
VGdgvd Gets the address or number of variable descriptors from a data group.
VGdgviewport Gets the viewport of a data group in virtual, screen, or normalized

device coordinates.
VGvd Gets basic information from a variable descriptor.
VGvdaccess Gets the access information from a variable descriptor.
VGvdcontext Manages the context for variable descriptors.
VGvdctt Utilities for specifying the variable color.
VGvdrange The variable value range utilities.
VGvdvarvalue Routines to set variables associated with variable descriptors.

VGdg
VGdg Functions VG Routines

Gets basic information from a data group.

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGdg Functions

VGdgdevice Gets the device index of a data group.
VGdgget Gets the data group’s address or the number of data

groups.

VGdgdevice

 VGdg Functions VGdg Routines

Gets the device index of a data group.

int
VGdgdevice (

DATAGROUP dgp)

 VGdgdevice returns the Error! Reference source not found.device index for the data group pointed to by dgp.
The device index specifies which device the data group is to be displayed on. The user can specify a device for a
data group by calling VPdgdevice. Valid device indices can be obtained by calling VUopendevice. VUopendevice
must be given the name of the desired device.

VGdgget

 VGdg Functions VGdg Routines

Gets the data group’s address or the number of data groups.

DATAGROUP
VGdgget (

int index)

VGdgget accepts an Error! Reference source not found.index and returns a pointer to the data group referenced by
that index. The first data group has an index of 1. Returns the current number of data groups if index is zero. Returns
NULL if index refers to a non-existent data group.

VGdgcolor
VGdgcolor Functions VG Routines

Gets the color information from a data group.Error! Reference source not found.

See Also
VPdgcolor

Example
The following code fragment prints the current foreground color.

COLOR_SPEC color;
DATAGROUP dgp;

VGdgfrcolor (dgp, &color);
if (color.rgb_rep.rgb_rep_flag >= 0)

printf ("The foreground color index is %d\n", color.color_index);
else

{
printf ("The foreground color is ");
printf ("red = %d; green = %d; blue = %d\n", color.rgb_rep.red,

color.rgb_rep.green, color.rgb_rep.blue);
}

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGdgcolor Functions
VGdgbkcolor Gets the background color of a data group.
VGdgfrcolor Gets the foreground color of a data group.

VGdgbkcolor

 VGdgcolor Functions VGer Routines

Gets the background color of a data group.

void
VGdgbkcolor (

DATAGROUP dgp,
COLOR_SPEC *color)

VGdgbkcolor gets the background color associated with the data group. The viewport is set to this color when it is
erased.

VGdgfrcolor

 VGdgcolor Functions VGRoutines

Gets the foreground color of a data group.

void
VGdgfrcolor (

DATAGROUP dgp,
COLOR_SPEC *color)

VGdgfrcolor gets the foreground color associated with the data group. This is the color of the static context of the
data group display, such as the title or viewport outline.

For both of these routines, dgp must point to a previously created data group, and color should point to a
COLOR_SPEC data structure in which the routine stores the desired color information. The color is either in RGB
form or in device-dependent color index form. The COLOR_SPEC data structure includes a flag indicating the form
in which the data is stored. See COLOR_SPEC typedef in the Include Files chapter.

VGdgcontext
VGdgcontext Functions VG Routines

Gets the context information from a data group.Error! Reference source not found.

See Also
VGvdcontext, VPdgcontext

Example
The following code fragment gives a data group a time axis label, and then retrieves the label.

DATAGROUP *dgp;
char *label;

/* dgp points to a previously created data group. */
VPdgaxlabel (dgp, V_TIME_AXIS, "MONTHS");
label = VGdgaxlabel (dgp, V_TIME_AXIS);

/* label now points to the copy of MONTHS in the DATAGROUP data structure. */
The following code fragment determines whether any axis tick marking has been turned on, and whether context
drawing has been turned on.

/* Is axis tick marking on? */
if (VGdgcontext (dgp, V_FT_TICS | V_FV_TICS | V_FD1_TICS | V_FD2_TICS))

printf ("Axis tick marking enabled.\n");

/* Is context drawing enabled? */
if (VGdgcontext (dgp, V_FCONTEXT))

printf ("Context drawing enabled.\n");

The following code fragment gets the current grid attributes.
COLOR_SPEC color;
int ltype, lwidth;
DATAGROUP dgp;

VGdggrid_attr (dgp, &color, <ype, &lwidth);
printf ("The current grid line type is %d\n", ltype);

The following code fragment determines whether a graph scrolls or wraps around.
DATAGROUP dgp;
int amount;

amount = VGdgscroll_amount (dgp);
if (amount == 0)

printf ("The graph wraps around.\n");
else

printf ("The graph scrolls.\n");

The following code fragment displays the number of slots assigned to a previously created data group.
DATAGROUP dgp;
int num_slots;

num_slots = VGdgslots (dgp);
printf ("The number of slots in the data group is %d\n", num_slots);

The following code fragment gets the time increment between adjacent time slices.
DATAGROUP dgp;
float increment;

VGdgtime_start_incr (dgp, NULL, &increment);
printf ("The time between time slices is %5.2f.\n", increment);

The following code fragment prints the title associated with a previously created data group, pointed to by dgp.
printf ("The data group title is: %s\n", VGdgtitle (dgp));

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGdgcontext Functions
VGdgaxlabel Gets the time or space axis label.
VGdgcontext Gets the context control mask of a data group.
VGdggrid_attr Gets the grid attributes for a graph.
VGdgscroll_amount Gets the graph scroll amount.
VGdgslots Gets the number of data group slots.
VGdgticlabfcn Gets the tick labeling function of a data group.
VGdgtime_start_incr Gets the time axis start and increment.
VGdgtitle Gets the title of the data group.

VGdgaxlabel

 VGdgcontext Functions VG Routines

Gets the time or space axis label.

char *
VGdgaxlabel (

DATAGROUP dgp,
int axis_type)

VGdgaxlabel returns the Error! Reference source not found.axis label of the time axis or either of the two spatial
axes that are used if the variable being displayed is a matrix. Returns a pointer to a NULL-terminated character
string that is the label associated with the specified axis. The choice of axis is indicated by the character axis_type:
Valid flags are:

V_TIME_AXIS For the time axis.
V_FIRST_AXIS For the first spatial axis, which runs horizontally to indicate the columns.
V_SECOND_AXIS For the second spatial axis, which runs vertically to indicate the rows.

The pointer that is returned points into part of the DATAGROUP data structure. If you change the string that is
pointed to, you can affect the data group. To change the string, first make a copy, then assign the new label to the
data group using VPdgaxlabel.

Returns NULL if dgp is invalid.

To get the value axis label, use VGvdvallabel.

VGdgcontext

 VGdgcontext Functions VG Routines

Gets the context control mask of a data group.

LONG
VGdgcontext (

DATAGROUP dgp,
LONG mask)

VGdgcontext returns a LONG containing the status of a data group’s context control flags. These flags control how
much information the display formatter puts in the display context. dgp is a pointer to the data group. mask should
contain a “1” bit in the position corresponding to each control flag to be checked, and a “0” bit in all other positions.
See the description of VPdgcontextfor a discussion of the context control flags, their meanings, and pre-defined
constant names.

VGdggrid_attr

 VGdgcontext Functions VG Routines

Gets the grid attributes for a graph.

void
VGdggrid_attr (

DATAGROUP dgp,
COLOR_SPEC *color,
int *linetype,
int *linewidth)

VGdggrid_attr gets the gError! Reference source not found.Error! Reference source not found.rid color, line
type, and line width for the display formatter from the time axis. If the attributes are not defined, the color is set to
the data group foreground color, line type is set to zero, and line width is set to one.

VGdgscroll_amount

 VGdgcontext Functions VG Routines

Gets the graph scroll amount.

int
VGdgscroll_amount (

DATAGROUP dgp)

VGdgscroll_amount gets the Error! Reference source not found.Error! Reference source not found.amount to
be scrolled when graphs with history fill all their slots. This does not apply to all graphs.

VGdgslots

 VGdgcontext Functions VG Routines

Gets the number of data group slots.

int
VGdgslots (

DATAGROUP dgp)

VGdgslots returns an int count of the number of Error! Reference source not found.Error! Reference source not
found.slots or time slices to fit into one display of the data associated with the data group. Generally, a display
formatter erases previous data values when displaying the next set of time slices. If the data being displayed are
scalars, the number of slots is the number of data points that are displayed. If the data being displayed are matrices
or vectors, the display formatter only displays one time slice at a time, regardless of the number of slots specified.

VGdgticlabfcn

 VGdgcontext Functions VG Routines

Gets the tick labeling function of a data group.

DV_TICLABELFUNPTR
VGdgticlabfcn (

DATAGROUP dgp,
int axis_type)

void
ticlabelfunc (

ADDRESS argpcopy,
double *value,
ADDRESS output,
TIC_DATA *tdp)

VGdgticlabfcn returns the tick labeling function for a data group axis. The axes are indicated by:

V_TIME_AXIS For the time axis.
V_FIRST_AXIS For the first spatial axis, which runs horizontally to indicate the columns.
V_SECOND_AXIS For the second spatial axis, which runs vertically to indicate the rows.

To get the value axis labeling function, use VGvdticlabfcn.

VGdgtime_start_incr

 VGdgcontext Functions VG Routines

Gets the time axis start and increment.

void
VGdgtime_start_incr (

DATAGROUP dgp,
float *start,
float *increment)

VGdgtime_start_incr gets theError! Reference source not found.Error! Reference source not found. time axis
start and increment values, used to label the time axis. The arguments are pointers to floats. If the pointer is NULL,
that argument is not to be set.

VGdgtitle

 VGdgcontext Functions VG Routines

Gets the title of the data group.

char *
VGdgtitle (

DATAGROUP dgp)

VGdgtitle returns a pointer to the Error! Reference source not found.Error! Reference source not found.Error!
Reference source not found.title associated with the data group, dgp. The title is a NULL-terminated string. Returns
NULL if dgp is invalid.

The pointer that is returned points into part of the DATAGROUP data structure. If you change the string that is
pointed to, you can affect the data group. To change the string, first make a copy, then assign the new title to the data
group using VPdgtitle.

VGdgdf
VGdgdf Functions VG Routines

Gets information related to the display formatter from a data group.

See Also
VPdgdf, VPdgdraw

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGdgdf Functions
VGdgdf Gets the display formatter associated with a data group.
Vgdgdfbuffer Gets the data buffer associated with a data group.
Vgdgdfbuffernum Gets the number of data elements to be stored in the buffer.
Vgdgdfdata Gets the pointer to a formatter data area.
Vgdgdfstatus Gets the drawing status of the display formatter.

VGdgdf

 VGdgdf Functions VG Routines

Gets the display formatter associated with a data group.

DISPFORM
VGdgdf (

DATAGROUP dgp)

VGdgdf returns the display formatter associated with the data group, dgp. Returns NULL if there is no display
formatter attached.

VGdgdfbuffer

 VGdgdf Functions VG Routines

Gets the data buffer associated with a data group.

ADDRESS
VGdgdfbuffer (

DATAGROUP dgp)

VGdgdfbuffer returns the address of the data buffer associated with the data group, dgp.

VGdgdfbuffernum

 VGdgdf Functions VG Routines

Gets the number of data elements to be stored in the buffer.

int
VGdgdfbuffernum (

DATAGROUP dgp)

VGdgdfbuffernum returns the number of data elements to be stored in the buffer associated with a data group, dgp.

VGdgdfdata

 VGdgdf Functions VG Routines

Gets the pointer to a formatter data area.

ADDRESS
VGdgdfdata (

DATAGROUP dgp)

VGdgdfdata returns the pointer to a Error! Reference source not found.Error! Reference source not found.data
area attached to the data group, dgp. When the display formatter is called to set up a graph for drawing, it creates the
data area and attaches it to the data group. The data area contains information about the graph setup that is required
across calls to the display formatter. The data area is attached to the data group by VPdgdfdata, which saves a
pointer to the data area in the data group. VGdgdfdata is primarily called from display formatters. Returns NULL if
no data area has been assigned. dgp must contain a valid data group since this routine does not determine whether or
not the data group is valid. This routine is intended for use by experienced DataViews users who are creating new
display formatters. See the DataViews Graph Development Guide.

VGdgdfstatus

 VGdgdf Functions VG Routines

Gets the drawing status of the display formatter.

LONG
VGdgdfstatus (

DATAGROUP dgp,
LONG mask)

VGdgdfstatus returns the status of the display formatter associated with the data group, dgp. mask is a bit mask of
flags that are OR’ed together where each flag requests different status information. Returns the mask of request flags
AND’ed to the current status. Valid flags are:

V_DGDF_CANT_DRAW Did the setup fail?
V_DGDF_SETUP_DONE Was the display formatter set up?
V_DGDF_CONTEXT_DRAWN Was the context drawn?
V_DGDF_ALL Return the result of all three request flags.

VGdgdfargs
VGdgdfargs Functions VG Routines

Gets the display formatter arguments to a data group.

See Also
VPdgdfargs. See the Display Formatters (VD) chapter for formatters that accept paired name-value arguments.

Example
The following code fragment prints the display formatter arguments for a data group:

NAME_VALUE_PAIR *dfarg;
int i, dfargsize;

VGdgdfargs (dgp, &dfarg, &dfargsize);
if (dfargsize == 0)

printf ("There are no arguments\n");
else

{
printf ("There are %d argument pairs:\n");
for (i = 0; i < dfargsize; i++)

printf (" Name: %s; Value: %s\n", dfarg[i].name, dfarg[i].value);
}

To get the value string associated with a given argument name:
DATAGROUP dgp;
char *value;

value = VGdgdfarg_value (dgp, "Argument Name");

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGdgdfargs Functions
VGdgdfarg_value Gets the value associated with a given argument.
VGdgdfargs Gets the display formatter arguments.

VGdgdfarg_value

 VGdgdf Functions VG Routines

Gets the value associated with a given argument.

char *
VGdgdfarg_value (

DATAGROUP dgp,
char *name)

VGdgdfarg_value returns a pointer to the value string associated with the argument name string, name. Returns
NULL if there is no argument with that name. Note that the pointer is to an internal string which must not be
modified. This routine is case-insensitive.

VGdgdfargs

 VGdgdf Functions VG Routines

Gets the display formatter arguments.

void
VGdgdfargs (

DATAGROUP dgp,
NAME_VALUE_PAIR **dfargarray,
int *dfargsize)

VGdgdfargs gets display formatter arguments, dfargs, from the specified data group, dgp. dfargarray is set to the
address of an array of dfargsize name-value pairs that communicate display formatter-specific information to the
display formatter associated with the data group.

A NAME_VALUE_PAIR structure contains two pointers: the first points to a name string, which tells the display
formatter which value is being specified; the second points to a value string, which the display formatter interprets.
The structure pointed to by dfargarray is an internal data structure and should not be modified. If changes are
required, first make a copy, then use VPdgdfargsto set the new value.

VGdgvd
VGdgvd Functions VG Routines

Gets the address or number of variable descriptors from a data group.

See Also
VGvd, VPdgvd, VPvd

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGdgvd Functions
VGdgvd Gets the address or number of variable descriptors from a data group.

VGdgvd

 VGdgvd Functions VG Routines

Gets the address or number of variable descriptors from a data group.

VARDESC
VGdgvd (

DATAGROUP dgp,
int index)

VGdgvd accepts an index and a pointer to a data group and returns a pointer to the variable descriptor in the data
group, dgp, referenced by index. Returns the number of variable descriptors if index is 0. If the data group pointer is
NULL, the routine uses the list of “hanging” variable descriptors, which are variable descriptors that have not yet
been associated with a data group.

Returns a pointer to a variable descriptor or an int, depending on whether index is greater than zero or equal to zero.
Returns NULL if index refers to a non-existent variable descriptor.

VGdgvd returns two different types of data: ints and pointers to a VARDESC. You must cast the result to the proper
type.

VGdgviewport
VGdgviewport Functions VG Routines

Gets the Error! Reference source not found.viewport of a data group in virtual, screen, or normalized device
Error! Reference source not found.coordinates.

See Also
VPdgviewport, VPdg

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGdgviewport Functions
VGdgNDCvp Gets the viewport of a data group in normalized device coordinates.
VGdgscreenvp Gets the viewport of a data group in screen coordinates.
VGdgvp Gets the viewport of a data group in virtual coordinates.

VGdgNDCvp

 VGdgviewport Functions VG Routines

Gets the viewport of a data group in normalized device coordinates.

void
VGdgNDCvp (

DATAGROUP dgp,
FLOAT_POINT *ll,
FLOAT_POINT *ur)

VGdgNDCvp gets the normalized device coordinates of the data group, dgp, and returns them in ll and ur.
Normalized device coordinates are floats where (0.0, 0.0) corresponds to the lower left of the screen and (1.0, 1.0)
corresponds to the upper right of the screen. For example, if the viewport was zoomed to twice the width and height
of the screen, the viewport’s normalized device coordinates would be ll = (0.0, 0.0) and ur = (2.0, 2.0).

VGdgscreenvp

 VGdgviewport Functions VG Routines

Gets the viewport of a data group in screen coordinates.

void
VGdgscreenvp (

DATAGROUP dgp,
RECTANGLE *scvp)

VGdgscreenvp gets the screen viewport, scvp, associated with the data group, dgp. Fills the RECTANGLE structure
pointed to by scvp with the viewport screen coordinates. In screen coordinates, (0, 0) corresponds to the lower left
corner of the screen and the upper right corner depends on the size of the screen.

VGdgvp

 VGdgviewport Functions VG Routines

Gets the viewport of a data group in virtual coordinates.

void
VGdgvp (

DATAGROUP dgp,
RECTANGLE *viewport)

VGdgvp gets the virtual viewport, viewport, associated with the data group, dgp. Fills the RECTANGLE structure
pointed to by viewport with the viewport virtual coordinates. The coordinate values are in the range [0, 32767],
where (0, 0) corresponds to the lower left corner of the screen and (32767, 32767) corresponds to the upper right
corner.

VGvd
VGvd Functions VG Routines

Gets the basic information from a variable descriptor.

See Also
VPvd

Example
The following code fragment gets the variable’s dimension from the variable descriptor, vdp, and prints out a
message describing the shape of the variable.

VARDESC vdp;
int d1, d2, d3;

VGvddim (vdp, &d3, &d2, &d1);
printf ("The variable is a ");
if (d3 > 1)

printf ("time-buffered ");
if (d1 == 1)

if (d2 == 1)
printf ("scalar\n");

else
printf ("column vector\n");

else if (d2 == 1)
printf ("row vector\n");

else
printf ("matrix\n");

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGvd Functions
VGvddim Gets the dimensions of a variable descriptor.
VGvdrefcount Gets the variable descriptor’s reference count.
VGvdtype Gets the type of the variable descriptor.

VGvddim

 VGvd Functions VG Routines

Gets the dimensions of a variable descriptor.

void
VGvddim (

VARDESC vdp,
int *dim3,
int *dim2,
int *dim1)

VGvddim gets the Error! Reference source not found.dimensions of the variable associated with the variable
descriptor vdp. By default, the dimension values are all one (1). If the data is stored in row-major order, dim1 is the
dimension that varies the fastest and dim3 is the dimension that varies the slowest. DataViews treats dim1 (rows) and
dim2 (columns) as the two spatial dimensions and dim3 as the time dimension.

VGvdrefcount

 VGvd Functions VG Routines

Gets the variable descriptor’s reference count.

int
VGvdrefcount (

VARDESC vdp)

VGvdrefcount returns the reference count of a variable descriptor. The reference count starts at zero when the
variable descriptor is created.

VGvdtype

 VGvd Functions VG Routines

Gets the type of the variable descriptor.

int
VGvdtype (

VARDESC vdp)

VGvdtype returns the type of the Error! Reference source not found.variable described by the variable descriptor,
vdp. The type is defined by VPvdtype or by VPvdcreate when the variable descriptor is created. Valid data types,
defined in dvstd.h, are:

Flag Data Type Size in bits
V_C_TYPE char 8
V_UC_TYPE unsigned char, UBYTE 8
V_S_TYPE short 16
V_US_TYPE unsigned short 16
V_L_TYPE int, LONG 32
V_UL_TYPE unsigned int, ULONG 32
V_F_TYPE float 32 (or 64 for some

systems)
V_D_TYPE double 64 (or 128 for some

systems)
V_T_TYPE NULL-terminated string no set size

VGvdaccess
VGvdaccess Functions VG Routines

Gets the access information from a variable descriptor.

See Also
VPvdaccess

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGvdaccess Functions
VGvd_accmode Gets the access mode flag.
VGvdaccess Gets the variable descriptor’s data access function.
VGvdbase Gets the variable’s base address.
VGvddirect_access Gets the variable’s data access mode flag.

VGvd_accmode

 VGvdaccess Functions VG Routines

Gets the access mode flag.

int
VGvd_accmode (

VARDESC vdp)

VGvd_accmode returns the Error! Reference source not found.Error! Reference source not found.access mode
flag, which determines how the base address in the variable descriptor, vdp, is interpreted. If the access mode is
direct, the base address, returned by VGvdbase, is the actual base address of the variable. If the variable is accessed
indirectly, the base address is the address of a pointer to the base address of the variable. The access mode is
indicated by the following flags:

V_DIR_ACCESS direct access
V_INDIR_ACCESS Indirect access
V_DS_BOUND Indirect access through a DataViews data

source variable

Normally, DataViews assumes that the base address saved with the variable descriptor points directly to the data to
be displayed. However, you can call VPvd _accmode to change the interpretation of the address to an indirect mode.
The base address is assigned when the variable descriptor is created using VPvdcreate, and it can be re-assigned
using VPvdbase. Using TvdPutBuffer to rebind a variable descriptor automatically changes the access mode to
V_DIR_ACCESS.

VGvdaccess

 VGvdaccess Functions VG Routines

Gets the variable descriptor’s data access function.

void
VGvdaccess (

VARDESC vdp,
ADDRESS *fcnp,
ADDRESS *argp)

VGvdaccess gets the information about the access function of the variable descriptor. fcnp contains a pointer to the
access function. argp contains a pointer to the argument block of the access function. A copy of the argument block
is saved in the data group. Returns the pointer to the copy, which must not be modified. This routine is intended for
use by sophisticated users who are creating new display formatters.

VGvdbase

 VGvdaccess Functions VG Routines

Gets the variable’s base address.

ADDRESS
VGvdbase (

VARDESC vdp)

VGvdbase returns the Error! Reference source not found.base address of a variable in a variable descriptor. The
base address is defined when the variable descriptor is created by calling VPvdcreate.

VGvddirect_access

 VGvdaccess Functions VG Routines

Gets the variable’s data access mode flag.

BOOLPARAM
VGvddirect_access (

VARDESC vdp)

VGvddirect_access returns YES if the variable is addressed directly. Returns NO if the variable is addressed
indirectly.

VGvdcontext
VGvdcontext Functions VG Routines

Gets the context information from a variable descriptor.

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGvdcontext Functions
VGvdlog Gets the log scale flag.
VGvdltype Gets the type of a line.
VGvdlwidth Gets the width of a line.
VGvdsymbol Gets the symbol for the variable descriptor.
VGvdticlabfcn Gets the tick labeling function.
VGvdvallabel Gets the variable’s value axis label.
VGvdvarname Gets a pointer to the variable name.

VGvdlog

 VGvdcontext Functions VG Routines

Gets the log scale flag.

int
VGvdlog (

VARDESC vdp)

VGvdlog returns YES or NO indicating whether the log of the Error! Reference source not found.Error!
Reference source not found.variable is displayed. YES indicates that the variable is displayed on a log scale. NO
indicates that it is displayed on a linear scale.

VGvdltype

 VGvdcontext Functions VG Routines

Gets the type of a line.

void
VGvdltype (

VARDESC vdp,
int *type)

VGvdltype gets the Error! Reference source not found.line type index associated with the variable descriptor, vdp.
The line type is placed in the int variable pointed to by type. Typically the number of the index is between 0 and 15;
however, not all devices support 16 line types. Line types are currently supported by the following formatters:
VD - Lines, VD - Strips, VD - Controllers, VD - Combos except VDhilobar, VDbullseye, VDimpulse, and
VDimpulseto0.

VGvdlwidth

 VGvdcontext Functions VG Routines

Gets the width of a line.

void
VGvdlwidth (

VARDESC vdp,
int *width)

VGvdlwidth gets the pixel width of the line associated with the variable descriptor, vdp. The line width is placed in
the int variable pointed to by width. Line types are currently supported by the following formatters: VD - Lines,
VD - Strips, VD - Controllers, VD - Combos except VDhilobar, VDbullseye, VDimpulse, and VDimpulseto0.

VGvdsymbol

 VGvdcontext Functions VG Routines

Gets the symbol for the variable descriptor.

int
VGvdsymbol (

VARDESC vdp)

VGvdsymbol returns the symbol in the attributes section for the variable descriptor, vdp. The symbol can have one of
the following values:

V_NULL_SYMBOL = ’ ’ - Default
V_ASTERISK = ’*’ - Asterisk
V_DOT = ’.’ - Dot
V_PLUS = ’+’ - Plus
V_CROSS = ’x’ - X
V_DIAMOND = ’d’ - Diamond
V_FILLED_DIAMOND = ’D’ - Filled Diamond
V_CIRCLE = ’o’ - Circle
V_FILLED_CIRCLE = ’O’ - Filled Circle
V_BOX = ’r’ - Box
V_FILLED_BOX = ’R’ - Filled Box
V_TRIANGLE = ’t’ - Triangle (apex up)
V_FILLED_TRIANGLE = ’T’ - Filled Triangle (apex up)
V_INVERTED_TRIANGLE = ’v’ - Triangle (apex down)
V_FILLED_INVERTED_TRIANGL

E
= ’V’ - Filled Triangle (apex down)

V_TRIANGLE_RIGHT = ’)’ - Triangle (apex right)
V_FILLED_TRIANGLE_RIGHT = ’>’ - Filled Triangle (apex right)
V_TRIANGLE_LEFT = ’(’ - Triangle (apex left)
V_FILLED_TRIANGLE_LEFT = ’<’ - Filled Triangle (apex left)
V_VERTICAL_LINE = ’|’ - Vertical Line
V_HORIZONTAL_LINE = ’-’ - Horizontal Line

VGvdticlabfcn

 VGvdcontext Functions VG Routines

Gets the tick labeling function.

void
VGvdticlabfcn (

VARDESC vdp,
DV_TICLABELFUNPTR ticlabelfunc,
ADDRESS *argp)

void
ticlabelfunc (

ADDRESS argpcopy,
double *value,
ADDRESS output,
TIC_DATA *tdp)

VGvdticlabfcn gets the Error! Reference source not found.Error! Reference source not found.tick label

function, ticlabelfunc, from a variable descriptor, vdp, and a pointer to the internally-stored argument block, argp,
for that function.

Since argp is set to an internal data structure which should only be modified with care.

VGvdvallabel

 VGvdcontext Functions VG Routines

Gets the variable’s value axis label.

char *
VGvdvallabel (

VARDESC vdp)

VGvdvallabel returns the Error! Reference source not found.Error! Reference source not found.value axis label
from the variable descriptor, vdp. This label was previously defined by calling VPvdvallabel. Returns NULL if no
value axis label is defined.

Returns a pointer that points into part of the variable descriptor data structure. If you change the string to which it
points, it affects the display. To change the string, first make a copy, then assign the new version to the variable
descriptor using VPvdvallabel.

VGvdvarname

 VGvdcontext Functions VG Routines

Gets a pointer to the variable name.

char *
VGvdvarname (

VARDESC vdp)

VGvdvarname returns a pointer to the Error! Reference source not found.variable name string in the variable
descriptor pointed to by vdp. This name was previously defined by calling VPvdvarname. Returns NULL if no
variable name is defined.

Returns a pointer that points into part of the variable descriptor data structure. If you change the string to which it
points, you could destroy the integrity of the structure. If a change is required, first make a copy, then assign the new
version to the variable descriptor using VPvdvarname.

VGvdctt
VGvdctt Functions VG Routines

Gets the color information from a variable descriptor.Error! Reference source not found.

See Also
VPvdcolor

Example
The following code fragment gets the address of the color threshold table and the number of colors in the table from
the variable descriptor, vdp. It then prints the contents of the table, with attention to the format of the color
specification.

VARDESC vdp;
int num_colors;
COLOR_THRESHOLD *ctp;

VGvdctt (vdp, &num_colors, &ctp);
for (i=0; i < num_colors; i++)

{
printf ("entry #%d: ", i);
if (ctp[i].threshcolor.rgb_rep.rgb_rep_flag < 0)

printf ("red = %d; green = %d; blue = %d\n",
ctp[i].threshcolor.rgb_rep.red,
ctp[i].threshcolor.rgb_rep.green,
ctp[i].threshcolor.rgb_rep.blue);

else /* ctp[i].threshcolor.rgb_rep.rgb_rep_flag >= 0 */
printf ("color table index = %d\n", ctp[i].threshcolor.color_index);

}

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGvdctt Functions
VGvdctt Gets the color information from a variable descriptor.

VGvdctt

 VGvdctt Functions VG Routines

Gets the color information from a variable descriptor.

void
VGvdctt (

VARDESC vdp,
int *num_colors,
COLOR_THRESHOLD **ctp)

VGvdctt gets the number of colors, num_colors, and the address of the color threshold table, ctp, stored in the
variable descriptor, vdp. If the color associated with the variable descriptor is not in color threshold table format,
VGvdctt first converts it to that format. Therefore, the number of colors is always greater than zero. Returns a
pointer that points into part of the DATAGROUP data structure. If you change the color threshold table that is
pointed to, it affects the display. To change the table, first make a copy, then assign the updated version to the data
group using VPvdctt.

VGvdrange
VGvdrange Functions VG Routines

Gets the range information from a variable descriptor.Error! Reference source not found.Error! Reference
source not found.

These routines get the minimum, low, and maximum, high, values of the variable associated with the variable
descriptor, vdp.

See Also
VPvdrange

Example
The following code fragment gets the range of values in both formats.

VARDESC vdp;
LONG low, high;
double dlow, dhigh;

VGvd _irange (vdp, &low, &high);
VGvd _drange (vdp, &dlow, &dhigh);
/* dlow may or may not equal (double) low, depending on how the */
/* range was set. The same is true for high and dhigh. */

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGvdrange Functions
VGvd_drange Gets the range in double precision float format.
VGvd_irange Gets the range in long integer format.

VGvd_drange

 VGvdrange Functions VG Routines

Gets the range in double precision float format.

void
VGvd_drange (

VARDESC vdp,
double *low,
double *high)

VGvd_drange converts the values to double precision floating point format before returning them.

VGvd_irange

 VGvdrange Functions VG Routines

Gets the range in long integer format.

void
VGvd_irange (

VARDESC vdp,
LONG *low,
LONG *high)

VGvd_irange converts the values to long integer format before returning them.

VGvdvarvalue
VGvdvarvalue Functions VG Routines

Gets values from a variable descriptor. Normalized data is transformed into the range [0,32767] where 0 corresponds
to the minimum data value and 32767 corresponds to the maximum data value. The indices into the variable
descriptor’s array are zero-based; therefore, to get the first element in the array, make the following call:Error!
Reference source not found.Error! Reference source not found.Error! Reference source not found.

VGvdValue (vdp, 0, 0, 0);

See Also
VPvdvarvalue

VGdg VGdgdfargs VGvd VGvdctt
VGdgcolor VGdgvd VGvdaccess VGvdrange
VGdgcontext VGdgviewport VGvdcontext VGvdvarvalue
VGdgdf

VGvdvarvalue Functions
VGvarLastValue Uses the access function to get the last value in unnormalized form.
VGvarNextValue Uses the access function to get the next normalized data value.
VGvarValue Uses the access function to get the specified normalized data value.
VGvdDValue Uses the variable descriptor to get the specified value as a double.
VGvdLastValue Uses the variable descriptor to get the last value in unnormalized form.
VGvdNextValue Uses the variable descriptor to get the next normalized data value.
VGvdValue Uses the variable descriptor to get the specified normalized data value.

VGvarLastValue

 VGvdvarvalue Functions VG Routines

Uses the access function to get the last value in unnormalized form.

double
VGvarLastValue (

VGDOUBLEACCESSFUNPTR accessfun,
ADDRESS args)

double *
accessfun(

ADDRESS args,
int i,
int j,
int k)

VGvarLastValue returns the unnormalized data value for the specified access function and the position in the data
array that was last read.

VGvarNextValue

 VGvdvarvalue Functions VG Routines

Uses the access function to get the next normalized data value.

int
VGvarNextValue (

VGLONGACCESSFUNPTR accessfun,
ADDRESS args)

LONG
accessfun (

ADDRESS args,
int i,
int j,
int k)

VGvarNextValue returns the normalized data value for the specified access function and the next position in the data
array.

VGvarValue

 VGvdvarvalue Functions VG Routines

Uses the access function to get the specified normalized data value.

int
VGvarValue (

VGLONGACCESSFUNPTR accessfun,
ADDRESS args,
int time,
int row,
int column)

LONG
accessfun (

ADDRESS args,
int i,
int j,
int k)

VGvarValue returns the normalized data value for the specified access function and offset, where offset is defined by
time, row, and column, which are indices into the variable’s array.

VGvdDValue

 VGvdvarvalue Functions VG Routines

Uses the variable descriptor to get the specified value as a double.

double
VGvdDValue (

VARDESC vdp,
int time,
int row,
int column)

VGvdDValue returns the current value at the position indicated by the indices as a double.

VGvdLastValue

 VGvdvarvalue Functions VG Routines

Uses the variable descriptor to get the last value in unnormalized form.

double
VGvdLastValue (

VARDESC vdp)

VGvdLastValue returns the unnormalized data value for the specified variable descriptor.

VGvdNextValue

 VGvdvarvalue Functions VG Routines

Uses the variable descriptor to get the next normalized data value.

int
VGvdNextValue (

VARDESC vdp)

VGvdNextValue returns the normalized data value for the specified variable descriptor and the next position in the
data array.

VGvdValue

 VGvdvarvalue Functions VG Routines

Uses the variable descriptor to get the specified normalized data value.

int
VGvdValue (

VARDESC vdp,
int time,
int row,
int column)

VGvdValue returns the normalized data value for the specified variable descriptor. time, row, and column are indices
into the variable’s array.

VP Routines
Vp Routines

Routines that put (create, modify, and delete) information into the DATAGROUP and VARDESC data structures.

The VP routines set up the data structures that DataViews uses to manage the display of the data in a program. First,
they define the attributes of the data to be displayed by setting up a variable descriptor (vd) for each variable, using
the routines starting with VPvd. Then, the variable descriptors are collected into data groups (dg) which contain
additional attributes for specifying how the group of variables is displayed. Any changes made to a data group or its
variable descriptors after the data group has been set up are not reflected until the data group is reset using
VPdgdfreset.

VP Modules

All modules in the VP layer require the following headers:
#include "std.h"
#include "dvstd.h"
#include "VPfundecl.h"

Any special headers required by a particular VP module are listed in the synopsis section for that module.
VPdg Manages the basic aspects of data groups.
VPdgcolor Data group color utilities.
VPdgcontext Controls the context of a data group.
VPdgdf Manages communication between the data group and the display formatter.
VPdgdfargs Data group display formatter argument utilities.
VPdgdraw Draws and updates the context and data for data groups.
VPdgvd Variable descriptor utilities.
VPdgviewport Sets the viewport of a data group using virtual, screen, or normalized device coordinates.
VPvd Manipulates the basic aspects of the variable descriptors.
VPvdaccess Access routines for variable descriptors.
VPvdcolor Utilities for specifying the variable color.
VPvdcontext Manages the context for variable descriptors.
VPvdrange The variable value range utilities.
VPvdvarvalue Routines to set variables associated with variable descriptors.

VPdg
Vpdg Functions VP Routines

Manages the basic aspects of data groups.

See Also
VPdgdraw, VPdgviewport, VGdg

Examples
The following code fragment illustrates the standard way of creating a data group.

DATAGROUP dgp;

dgp = VPdgcreate();

The following code fragment opens a graphic device for output and assigns the predefined data group, dgp, to that
device.

int devnum;

The following code fragment makes a copy of a data group so that you can see the same data displayed in two
different ways in two different places.

DATAGROUP dgp, dgpnew;
GLOBALREF DISPFORM VDbar, VDline;
RECTANGLE vp1 = {0, 0, 32767, 16383};
RECTANGLE vp2 = {0, 16384, 32767, 32767};
RECTANGLE *clipvp1, *clipvp2, **obsvps;

clipvp1 = &vp1; clipvp2 = &vp2;

obsvps = NULL;

/* Convert the clipped viewports from virtual to screen coordinates. */
GRvcs_to_scs (&clipvp1.ll, &clipvp1.ll);
GRvcs_to_scs (&clipvp1.ur, &clipvp1.ur);
GRvcs_to_scs (&clipvp2.ll, &clipvp2.ll);
GRvcs_to_scs (&clipvp2.ur, &clipvp2.ur);

/* Display the original data group as a bar graph in the lower half of the screen. */
VPdgvp (dgp, &vp1);
VPdgdf (dgp, VDbar);
VPdgdraw (dgp, clipvp1, obsvps);

/* Display the original data group as a line graph in the upper half of the screen. */
dgpnew = VPdgclone (dgp);
VPdgvp (dgpnew, &vp2);
VPdgdf (dgpnew, VDline);
VPdgdraw (dgp, clipvp2, obsvps);

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdg Functions
VPdgclone Makes a copy of a data group.
VPdgcreate Creates and initializes a data group.
VPdgdelete Deletes a data group and frees the associated memory.
VPdgdevice Assigns a graphical output device to a data group.

VPdgclone

 VPgd Functions VP Routines

Makes a copy of a data group.

DATAGROUP
VPdgclone (

DATAGROUP dgp)

VPdgclone creates a copy of a data group and returns a pointer to that copy. When the data group is copied, it is set
up as if the display formatter had just been connected and the data group had not been displayed yet, even if the
original data group has already been displayed once. This means that the context is redrawn the next time the copy is
displayed. Returns a pointer to the copy of the data group. After a clone is made, changes to the original are not
reflected in the copy.

VPdgcreate

 VPgd Functions VP Routines

Creates and initializes a data group.

DATAGROUP
VPdgcreate (void)

VPdgcreate creates a new data group, sets its parameters to their default settings, and returns a pointer to the new
data group. This routine also adds the new data group to the list of data groups maintained by the system.

VPdgdelete

 VPgd Functions VP Routines

Deletes a data group and frees the associated memory.

void
VPdgdelete (

DATAGROUP dgp)

VPdgdelete removes a data group from the list maintained by DataViews and frees its allocated memory.

VPdgdevice

 VPgd Functions VP Routines

Assigns a graphical output device to a data group.

void
VPdgdevice (

DATAGROUP dgp,
int device_index)

VPdgdevice assigns a device index to the data group, indicating the device on which it is to be displayed.
device_index must contain the number returned by VUopendevice. This is distinct from the physical device number
obtained when calling GRopen.

VPdgcolor
Vpdgcolor Functions VP Routines

Data group color utilities.

See Also
VPvdcolor, VGdgcolor

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdgcolor Functions
VPdgbkclrndx Assigns the background color using the lookup table index.
VPdgbkcolor Assigns the background color using the COLOR_SPEC format.
VPdgbkrgb Assigns the background color using the RGB format.
VPdgfrclrndx Assigns the foreground color using the lookup table index.
VPdgfrcolor Assigns the foreground color using the COLOR_SPEC format.
VPdgfrrgb Assigns the foreground color using the RGB format.

VPdgbkclrndx, VPdgbkcolor, VPdgbkrgb

Vpdgcolor Functions VP Routines

Assign a background color to a data group.

void
VPdgbkclrndx (

DATAGROUP dgp,
int clrndx)

void
VPdgbkcolor (

DATAGROUP dgp,
COLOR_SPEC *color)

void
VPdgbkrgb (

DATAGROUP dgp,
int r,
int g,
int b)

VPdgbkclrndx, VPdgbkcolor, and VPdgbkrgb assign a background color to a data group. The background color is
the color used to erase the viewport of the data group. VPdgbkcolor expects the color in COLOR_SPEC format;
VPdgbkclrndx expects the color as a device-dependent color lookup table index; VPdgbkrgb expects the color in
RGB format. The default background color is black.

VPdgfrclrndx, VPdgfrcolor, VPdgfrrgb

Vpdgcolor Functions VP Routines

Assign a foreground color to a data group.

void
VPdgfrclrndx (

DATAGROUP dgp,
int clrndx)

void
VPdgfrcolor (

DATAGROUP dgp,
COLOR_SPEC *color)

void
VPdgfrrgb (

DATAGROUP dgp,
int r,
int g,
int b)

VPdgfrclrndx, VPdgfrcolor, and VPdgfrrgb assign a foreground color to a data group. This color is used to draw the
context (e.g., the title) of the data display when you are using routines from the VPdgdraw module. VPdgfrcolor
expects the color in COLOR_SPEC format; VPdgfrclrndx expects the color as a device-dependent color lookup table
index; VPdgfrrgb expects the color in RGB format. The default foreground color is a middle-level gray.

RGB format specifies a color using three numbers in the range [0,255], where each number corresponds to the
intensity of one of the additive primary colors: red, green, and blue.

Note that these routines affect the static part (the context) of the data display; the VPvd routines define the colors for
the data variables (the dynamic part).

Diagnostics
The foreground color routine affects all of the data group’s context when it is displayed. There is no way to
selectively set the colors of the parts of the context.

VPdgcontext
Vpdgcontext Functions VP Routines

Controls the context of a data group.

See Also
VPdgdraw, VPvdcontext, VGdgcontext

Examples
The following code fragment sets the time axis label to “MONTHS.”

VPdgaxlabel (dgp, V_TIME_AXIS, "MONTHS");

The following code fragment defines a function to label the time axis with month names.
/* Tell the data group to use the routine month_name() to label the time axis. */
VPdgticlabfcn (dgp, ’t’, (DV_TICLABELFUNPTR) month_name, NULL, 0);
VPdgcontext (dgp, V_FT_LABEL_TICS | V_FV_LABEL_TICS | V_FT_TICS | V_FV_TICS, YES);

. . .
}

static void month_name (argp, value, output, tdp)
int *argp;
double *value;
union{

char string[4];
LABEL_SIZE size;
} *output;

ADDRESS tdp;
{

static char *months[12] = {
"JAN", "FEB", "MAR", "APR", "MAY", "JUN",
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC"};

if (value == NULL) /* Describe the largest possible tick label */
{

output->size.StringLength = 3;
output->size.NumLines = 1;
output->size.LongestLine = 3;

}
else /* Return a copy of the appropriate string */

strcpy (output->string,
months[((int)(*value - 1)) %12]);

}

The following code fragment makes the time axis start at 0 and to be incremented 0.5 units per time slice.
DATAGROUP dgp;
float start, incr;

start = 0.0;
incr = 0.5;

VPdgtime_start_incr (dgp, &start, &incr);

The following code fragment turns on all axis tick marking and turns off labeling on tick marks with values.
VPdgcontext (dgp, V_FT_TICS | V_FV_TICS | V_FD1_TICS | V_FD2_TICS, YES);

VPdgcontext (dgp, V_FT_LABEL_TICS | V_FV_LABEL_TICS | V_FD1_LABEL_TICS
| V_FD2_LABEL_TICS, NO);

The following code fragment lets you make a formatter scroll left one slot at a time.
DATAGROUP dgp;
VPdgscroll_amount (dgp, 1);

The following code fragment makes the formatter clear the data area whenever it fills up.
DATAGROUP dgp;
VPdgscroll_amount (dgp, VGdgslots (dgp));

The following code fragment sets the title of a data group.
VPdgtitle (dgp, "TITLE");

The following code fragment sets the grid attributes to red, double-width, patterned lines.
COLOR_SPEC color;
int ltype, lwidth;

color.rgb_rep.rgb_rep_flag = -1;
color.rgb_rep.red = 255;
color.rgb_rep.green = 0;
color.rgb_rep.blue = 0;

ltype = 3;
lwidth = 2;

VPdggrid_attr (dgp, &color, <ype, &lwidth);

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdgcontext Functions
VPdgaxlabel Assigns labels to the axes of a data group.
VPdgcontext Sets the data group context control flags.
VPdggrid_attr Assigns the grid attributes for a data group.
VPdgscroll_amount Sets the scrolling for a data group.
VPdgslots Sets the number of time slices.
VPdgticlabfcn Assigns a tick labeling function to a data group axis.
VPdgtime_start_incr Sets the start and increment values of the time axis.
VPdgtitle Sets the title of a data group.

VPdgaxlabel

Vpdgcontext Functions VP Routines

Assigns labels to the axes of a data group.

void
VPdgaxlabel (

DATAGROUP dgp,
int axis_type,
char *label)

VPdgaxlabel defines a label for the axis of any display of the data group. The axes that can be labeled by this routine
are the time axis and the two spatial axes. The spatial axes are available on certain display formatters when the
variables in the data group are vector or matrix. See the Display Formatters chapter to determine which display
formatters support spatial axes. axis_type specifies the axis to be labeled. Valid flags are:

V_TIME_AXIS For the time axis.
V_FIRST_AXIS For the first spatial axis, which runs horizontally to indicate the columns.
V_SECOND_AXIS For the second spatial axis, which runs vertically to indicate the rows.

The value axis is specified using VPvdvallabel.

VPdgcontext

Vpdgcontext Functions VP Routines

Sets the data group context control flags.

void
VPdgcontext (

DATAGROUP dgp,
LONG flag_mask,
BOOLPARAM on_off_flag)

VPdgcontext sets and clears the context control flags that tell the display formatter how much information to put in
the display context. The display context is the static part of the display that helps the viewer interpret the graphical
encoding of the data. The static context includes such features as the title of the display, the legend, and the axis tick
marks.

dgp is a pointer to the data group. flag_mask indicates which flags are to be changed and on_off_flag tells whether
all these flags are to be turned on (YES or 1) or off (NO or 0).

dvstd.h contains pre-defined constants that can be used as flag_mask values. They can be ORed together, so an
arbitrary number of flags can be set with each call.

Context Control Flags:

V_F_ALL: If YES, the display formatter displays all the context options described
below. If NO, the display formatter draws the display with none of
the context options.

V_FPRE_ERASE: If YES, the display formatter clears the viewport before drawing in it. If
NO, the display formatter overlays whatever is already in the
viewport. This does not guarantee that repeated calls to the display
formatter result in clean overlays since the display formatter must do
some erasing in order to update the display. The default setting is
YES.

V_FCONTEXT: If YES, the display formatter displays the context according to the
settings of the remaining context control flags. If NO, the display
formatter ignores the other flags except for V_FVPBOX and
V_FPRE_ERASE. If this flag is NO, the only thing displayed is the
graphical encoding of the data and the viewport box (if the
V_FVPBOX flag is set). The default setting is YES.

V_FLEGEND: If YES, the display formatter displays a legend that associates the
variable name with the color or color threshold table specified for
the variable. This lets you identify the variable in the display
according to its color. The default setting is YES.

V_FVPBOX: If YES, the display formatter draws a box around the viewport. This
sometimes helps the display look cleaner. The default setting is YES.

Axis Flags:

The display formatter axes (time, value, spatial axis 1st dimension, spatial axis 2nd dimension, roll, pitch) have the
following valid flags:

V_FT_TICS,
V_FV_TICS,
V_FD1_TICS,

If YES, the display formatter puts tick marks on the axis. If
NO, the display formatter ignores the settings for the
minimum number of tick marks and the tick labels.

V_FD2_TICS,
V_FROLL_TICS,
V_FPITCH_TICS

The default setting is YES.

V_FT_MINTICS,
V_FV_MINTICS,
V_FD1_MINTICS,
V_FD2_MINTICS

If YES, and if the tick flag is also YES, the display formatter
labels the ticks with appropriate values. Note that these
tick labels are in addition to the axis labels that may
have been specified by a call to VPdgaxlabel. The
default setting is YES.

V_FT_LABEL_TICS,
V_FV_LABEL_TICS,
V_FD1_LABEL_TICS,
V_FD2_LABEL_TICS,
V_FROLL_LABEL_TICS,
V_FPITCH_LABEL_TICS

If YES, and if the tick flag is also YES, the display formatter
displays the minimum number of tick marks, which is
two, with one at each end of the axis. The default
setting is NO. The roll and pitch axes do not use this
flag.

Grid Flags:

Users can define grids for some graphs where the grid attributes are defined using VPdggrid_attr as explained in the
Display Formatters (VD) chapter. Valid flags are:

V_FV_GRID: If YES, grid lines are drawn for each major tick on
the value axis. The default setting is NO.

V_FT_GRID: If YES, grid lines are drawn for each major tick on
the time axis. The default setting is NO.

VPdggrid_attr

Vpdgcontext Functions VP Routines

Assigns the grid attributes for a data group.

void
VPdggrid_attr (

DATAGROUP dgp,
COLOR_SPEC *color,
int *linetype,
int *linewidth)

VPdggrid_attr assigns grid color and line type for the data group. Line width is not currently supported, so the
linewidth parameter is ignored by the display formatter, although you can set and get the linewidth value. The grid is
associated with the time and value axes after it is turned on by appropriate calls to VPdgcontext.

VPdgscroll_amount

Vpdgcontext Functions VP Routines

Sets the scrolling for a data group.

void
VPdgscroll_amount (

DATAGROUP dgp,
int amount)

VPdgscroll_amount specifies the amount a graph with history scrolls when it fills up. Sets the number of slots that
are made available each time all the slots are filled.

Reasonable values for amount are:

0 Sets the formatter to wrap around.
SlotCount The number of slots or time slices. The formatter erases the entire data area when it fills up. See

VGdgslots.
n Where 0 < n < SlotCount. The formatter moves the data left n slots, redrawing SlotCount - n data items and

leaving n slots empty.

The default value is 0.

VPdgslots

Vpdgcontext Functions VP Routines

Sets the number of time slices.

void
VPdgslots (

DATAGROUP dgp,
int count)

VPdgslots sets the number of time slices that are to fit into the display. For example, if the slot count is set to 8, it
means that the display formatter makes room for eight time slices. For a bar graph, this means making room for
eight sets of bars. The graph could then be updated by calling VPdgdraw or VPdgtakedata and VPdgdrdata eight
times before it fills up. At the ninth call, it performs some remedial action such as wrapping around or scrolling the
bars to the left. This continually displays the eight most recent values of the data on the display.

Note that some display formatters can only display the most recent data value. These display formatters usually give
a warning message if the slot count is greater than one.

The default for count is 1 for display formatters that can only display one time slice, and 10 for display formatters
that can display more than one time slice.

VPdgticlabfcn

Vpdgcontext Functions VP Routines

Assigns a tick labeling function to a data group axis.

void
VPdgticlabfcn (

DATAGROUP dgp,
int axis_type,
DV_TICLABELFUNPTR ticlabelfunc,
char *argp,
int argsize)

void
ticlabelfunc (

ADDRESS argpcopy,
double *value,
ADDRESS output,
TIC_DATA *tdp)

VPdgticlabfcn assigns a tick labeling function to an axis. The tick labeling function is called once by the display
formatter when it sets up the context. It is called twice when the display formatter draws or updates labels; first to
determine whether or not the labels fit, and second to draw the labels. If the context is set to label the tick marks of
an axis, the display formatter calls this labeling function with the value associated with the tick. The function then
gets a label to be attached to that tick mark.

Valid arguments are:

dgp: Pointer to the data group.
axis_type: Character flag indicating which axis receives the axis labeling function. Valid

flag values are: V_TIME_AXIS for the time axis, V_FIRST_AXIS for the
first dimension spatial axis indicating the columns of a matrix variable,
and V_SECOND_AXIS for the second dimension spatial axis indicating
the rows of a matrix variable.

ticlabelfunc: Function that calculates the tick label. This function is described below.
argp: Pointer to a user-defined argument block to be passed to the tick labeling

function.
argsize: the number of bytes in the user-defined argument block. This is included so a

copy can be made of the argument block in the data group. A pointer to
this copy is passed to the tick labeler, ensuring that the argument block
contains all information required for VPdgticlabfcn.

The function ticlabelfunc must be defined with four arguments:
void
ticlabelfunc (

ADDRESS argpcopy,
double *value,
union

{
char string[10];
LABEL_SIZE size;
} *output,

TIC_DATA *tdp)

argpcopy: Constant or pointer to a user-defined data structure which can contain several values that
determine how the ticks are labeled. A copy of this data structure is stored in the data group and
is passed unmodifed to the ticlabelfunc function. The size of the copy can be determined using

argsize.
value: Pointer to a double precision floating point number that gives the value associated with the tick mark.

By default value is initially 1 and increments by 1 each time the labeling function is called. To
change its initial value or increment amount call VPdgtime_start_incr. When value is NULL, the
caller wants the tick labeler function to return the size of the longest string it can possibly
generate.

output: Pointer to a data structure designated to receive the information provided by this routine. If value is
non-NULL, then output is a pointer to a string array which receives the tick label generated for
value. If value is NULL, output points to a LABEL_SIZE structure which receives the size of the
text string. The graph asks for this size information to determine how much space to allocate for
tick labels. LABEL_SIZE is defined in dvstd.h and has three fields:

StringLength: The number of characters in the longest label. If the tick labels have multiple lines, this includes
all the characters on all the lines, including the newline characters.

NumLines: The maximum number of lines in a tick label. For a label with no embedded newline characters,
this should be set to 1.

LongestLine: The number of characters in the longest line of the tick label. For a single line label, this number
is the same as StringLength.

tdp: Pointer to a DataViews data structure of type TIC_DATA which describes how the ticks are to be laid out on
the axis. This structure is documented in the #include file dvtypes.h.

The TIC_DATA data structure is currently intended only for internal use, since the dvtypes.h file is not included with
the subroutine package. When defining the tick labeling function, declare tdp as type ADDRESS and ignore it in the
function. See the example below. Note that this is intended for use by sophisticated DataViews users.

VUdgticlabtab is a utility routine that uses VPdgticlabfcn to define a table of strings used as axis tick mark labels.

VPdgtime_start_incr

Vpdgcontext Functions VP Routines

Sets the start and increment values of the time axis.

void
VPdgtime_start_incr (

DATAGROUP dgp,
float *start,
float *increment)

VPdgtime_start_incr sets the time axis start and increment values. The arguments are pointers to floats. If a pointer
is NULL, the argument is unchanged. This gives the first slot a value of start, and the n-th slot a value of (n - 1) *
increment + start.

VPdgtitle

Vpdgcontext Functions VP Routines

Sets the title of a data group.

void
VPdgtitle (

DATAGROUP dgp,
char *title)

VPdgtitle assigns a character string to be used by the data group as its title. When the data group is displayed, this
title appears at the top of the display.

VPdgdf
Vpdgdf Functions VP Routines

Manages communication between the data group and the display formatter.

See Also
VPdgdraw, VGdgdf, Display Formatters (VD)

Examples
The following code fragment displays the data group information as a bar graph.

RECTANGLE *clipvp, **obsvps;
obsvps = NULL;

/* Bar graph display formatter */
GLOBALREF DISPFORM VDbar;

/* Attach the bar graph to the data group */
VPdgdf (dgp, VDbar);

/* Display the bar graph */
VGdgscreenvp (dgp, &clipvp);
VPdgdraw (dgp, clipvp, obsvps);

The following code fragment waits for a cursor position and determines which slot in a graph was picked.
DATAGROUP dgp;
DV_POINT SlotSize, CursorPosition;
RECTANGLE DataArea;
RECTANGLE *clipvp, **obsvps;
obsvps = NULL;

VGdgscreenvp (dgp, &clipvp);
VPdgdraw (dgp, clipvp, obsvps);

/* Poll, then get the cursor position in screen coordinates. */
. . .

if (DV_SUCCESS == VPdgdfquery (dgp,
V_Q_DATAVP, NULL, &DataArea)

&& DV_SUCCESS == VPdgdfquery (dgp,
V_Q_SLOTSIZE, NULL, &SlotSize))

if (CursorPosition.x < DataArea.ll.x ||
CursorPosition.x > DataArea.ur.x ||
CursorPosition.y < DataArea.ll.y ||
CursorPosition.y > DataArea.ur.y)
printf ("Cursor outside data area.\n");

else
printf ("Cursor in slot # %d.\n",

(CursorPosition.x - DataArea.ll.x) / SlotSize.x);

else
printf ("Couldn’t get info from the formatter.\n");

The following code fragment draws a graph, makes some changes in the data group, then calls VPdgdfreset to effect

the changes.
x = 0.6; /* Initialize variable being displayed */
VPdgdraw (dgp, clipvp, obsvps); /* Display the data group */
x = 4 * x * (1 - x); /* Update displayed variable */
VPdgtitle (dgp, "NEW TITLE"); /* Change the data group title */
VPdgdraw (dgp, clipvp, obsvps); /* Update the display (still with old title) */
x = 4 * x * (1 - x); /* Update displayed variable */
VPdgdfreset (dgp); /* Display it with new title */
VPdgdraw (dgp, clipvp, obsvps);
x = 4 * x * (1 - x); /* Update displayed variable */

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdgdf Functions
VPdgdf Assigns a display formatter to a data group.
VPdgdfbuffer Assigns a data buffer to a data group.
VPdgdfbuffernum Sets the number of data elements to be stored in the buffer.
VPdgdfdata Assigns a display formatter data area pointer into a data group.
VPdgdfmessage Sends a message or information to the display formatter.
VPdgdfquery Queries a display formatter for information.
VPdgdfreset Resets the display formatter associated with a data group.

VPdgdf

Vpdgdf Functions VP Routines

Assigns a display formatter to a data group.

void
VPdgdf (

DATAGROUP dgp,
DISPFORM df)

VPdgdf associates a display formatter, df, with the specified data group, dgp. The display formatter is specified by a
global pointer which must be declared accordingly in order to compile correctly.

VPdgdfbuffer

Vpdgdf Functions VP Routines

Assigns a data buffer to a data group.

void
VPdgdfbuffer (

DATAGROUP dgp,
ADDRESS buffer)

VPdgdfbuffer assigns a data buffer, buffer, to the data group, dgp. This routine is normally called by a display
formatter to attach the data buffer to the data group. The data buffer holds both displayed and undisplayed data so
data can be redisplayed after the data group is resized or exposed. This routine is intended for use by sophisticated
DataViews users who are creating new display formatters. See the DataViews Graph Development Guide.

VPdgdfbuffernum

Vpdgdf Functions VP Routines

Sets the number of data elements to be stored in the data buffer.

void
VPdgdfbuffernum (

DATAGROUP dgp,
int num)

VPdgdfbuffernum sets the number of data elements, num, to be stored in the data buffer attached to the data group,
dgp. This lets you specify a maximum number of data elements in situations where you don’t want to limit the
buffer to the number of slots. The default value of num is equal to the number of slots, which is the minimum
required to support redrawing the graph. If num is less than the number of data slots in the data group, an error
message is displayed.

VPdgdfdata

Vpdgdf Functions VP Routines

Assigns a display formatter data area pointer into a data group.

void
VPdgdfdata (

DATAGROUP dgp,
ADDRESS data_area)

VPdgdfdata associates a pointer to a data area with the data group. This routine is normally called by a display
formatter which uses it to attach an allocated data area to the data group. The data area is defined by the display
formatter to save information relevant to the data group across display calls. This routine is intended for use by
sophisticated DataViews users who are creating new display formatters. See the DataViews Graph Development
Guide.

The display formatter can’t save the information internally because it may be servicing several data groups at once.
Therefore, in order to isolate the display formatter from information specific to a data group, the data area is
attached to the data group itself. This information may include the current values being displayed, the display slot
sizes, and copies of important data in the data group.

CAUTION: The caller is responsible for managing the data that is pointed to. For example, if there is already a data
pointer in the data group and you want to attach a new one, you must deallocate the space pointed to by the old
pointer.

VPdgdfmessage

Vpdgdf Functions VP Routines

Sends a message or information to the display formatter.

BOOLPARAM
VPdgdfmessage (

DATAGROUP dgp,
int flag,
ADDRESS indatum)

VPdgdfmessage sends the display formatter a message or information. Can be used to change contextual information
about the graph. flag indicates the type of information to be received. indatum is the address of a structure
containing the information. This routine is intended for use by sophisticated DataViews users who are creating new
display formatters. To use this routine, you must define the recv_message entry point to process the flags and
structures you send using the flag and indatum parameters. See VDtime and the DataViews Graph Development
Guide.

VPdgdfquery

Vpdgdf Functions VP Routines

Queries a display formatter for information.

BOOLPARAM
VPdgdfquery (

DATAGROUP dgp,
int flag,
ADDRESS indatum,
ADDRESS outdatum)

VPdgdfquery retrieves information from a display formatter that has been invoked for a data group. It is used after
drawing the data group with VPdgdrdata, VPdgdraw, or VPdgdisplay. flag indicates what type of information is to
be returned. indatum is the address of a structure containing additional information related to the query. This
structure is NULL for some queries. outdatum is the address of a structure designated to hold the data that answers
the query. The routine returns DV_SUCCESS if the query is answered; otherwise returns DV_FAILURE.

The query flags fall into two categories: general and feedback. The general query flags get information relating to
the data group as a whole. The feedback query flags get information relating to a particular point in the data group.
The general query flags are:

V_Q_DATAVP Gets the area of the screen where the formatter is encoding
the data. Set indatum to NULL and make outdatum a
pointer to a RECTANGLE.

V_Q_DOES_CLIPPING Determines whether the formatter clips to obscuring
viewports. Returns YES in outdatum if the formatter
clips; otherwise returns NO. Set indatum to NULL and
make outdatum a pointer to a DV_BOOL.

V_Q_LEGSIZE Applies only to VDlegend. Gets the size of the legend. Set
indatum to NULL and make outdatum a pointer to a
DV_POINT.

V_Q_SLOTSIZE Gets the size of a single “slot” in a graph. A slot records one
time slice of data for scalar variables or one value in
vector or matrix variables. Set indatum to NULL and
make outdatum a pointer to a DV_POINT.

V_Q_DATA_SLOTSIZE Applies only to the spectro display formatters. Gets the size
of a single element where one value in the vector of data
is drawn. Set indatum to NULL and make outdatum a
pointer to a DV_POINT.

V_Q_VDTITLE_TEXTVP Applies only to VDtext and VDmessage. Gets the screen
coordinates of the smallest bounding box encompassing
the text. Set indatum to NULL and make outdatum a
pointer to a RECTANGLE.

V_Q_VDTITLE_CHARSIZE Applies only to VDtext and VDmessage. Gets the character
size used to display the text in the range [1,4]. Set
indatum to NULL and make outdatum a pointer to an int.

The feedback query flags let you get information displayed at a particular point in the data group. If the point comes
from a user pick, this feature lets you feedback information about the data displayed at the pick. Currently, only
certain display formatters support the feedback query flags. These are listed after the flags.

The feedback queries use pointers to DV_POINT or V_Q_PICK_VDP structures as indatum. Points must be in
screen coordinates. To get a point in screen coordinates from a location object, call VOloScpGet. The
V_Q_PICK_VDP structure contains a DV_POINT, a vdp, and the index of the vdp in the data group’s list of vdps. To

get a list of vdps at a point in the data group, use the V_Q_VDPS_AT_LOCATION query flag. You can use outdatum
from this query to get information for indatum for additional queries.

The feedback query flags are:

V_Q_VDPS_AT_LOCATION Gets an array of structures containing the vdps whose data
is drawn at or near the point. Set indatum to a pointer
to a DV_POINT and make outdatum a pointer to a
V_Q_VDP_LIST. See the table later in this description
for the pickable graphics and the accuracy required
for picking. If no vdps display data at or near the
point, the routine returns DV_FAILURE.

V_Q_SLOT_AT_LOCATION Gets the 1-based index of the slot at the point. If the point
is not in the data viewport, the query returns -1.0 for
outdatum. Set indatum to a pointer to a DV_POINT
and make outdatum a pointer to an int.

V_Q_DATA_SAMPLE Gets the iteration number of the data closest to the point.
If the point is not in the data viewport, the query
returns -1.0 for outdatum. Set indatum to a pointer to
a DV_POINT and make outdatum a pointer to a
double.

V_Q_SAMPLE_AT_LOCATION Gets the interpolated iteration number at the point. If the
point is not in the data viewport, the query returns -
1.0 for outdatum. Set indatum to a pointer to a
DV_POINT and make outdatum a pointer to a double.

V_Q_DATA_VALUE Gets the value of the datum displayed at the point. Set
indatum to a pointer to a V_Q_PICK_VDP and make
outdatum a pointer to a double.

V_Q_VALUE_AT_LOCATION Gets the interpolated value of the point with respect to the
vdp’s range. Set indatum to a pointer to a
V_Q_PICK_VDP and make outdatum a pointer to a
double.

V_Q_FLOOR_VALUE Applies only to VDpig and VDlinefill. Gets the visual base
value at the point. The floor value lets you take into
account the data values stacked beneath the datum at
the point. Set indatum to a pointer to a
V_Q_PICK_VDP and make outdatum a pointer to a
double.

V_Q_SECTOR_AT_LOCATION Applies only to VDradial and VDne_radial. Gets the 1-
based sector at the point. A sector is similar to a slot,
but starts and ends at a sample. A slot starts and ends
midway between samples. Set indatum to a pointer to
a V_Q_PICK_VDP and make outdatum a pointer to
an int.

The following display formatters support the feedback queries. They must be displaying scalar data.

Bars VDbar, VDbarhoriz, VDbarpacked, VDbarsolid, VDcenter,
VDpig

Combos VDbarline, VDbarpackedline, VDhilobar, VDhiloline, VDptsline
Strips VDstrip, VDstripras, VDvstrip, VDvstrip_r, VDwaterfall,

VDwaterfall_r
Misc. VDhighlow, VDline, VDlinefill, VDne_radial, VDpoints,

VDradial, VDstep
The following table lists the graphics that are pickable for each display formatter and the accuracy required for
picking. The accuracy is expressed in pixels. An accuracy of 0 indicates that the object requires an exact pick within

the width of the bar or marker. An accuracy of 5´5 indicates that the object must be within a 5´5 pixel rectangle
centered on the pick location.

Display Formatter Pickable Graphics Accuracy
VDbar

VDbarhoriz
VDbarpacked
VDbarsolid
VDcenter
VDpig

bar 0

VDbarline,
VDbarpackedline

bar
line

0
5´5

VDhighlow either endpoint of a vertical line (high, low)
horizontal line (open, close)

5´5
5´5

VDhilobar bar
either endpoint of a vertical line (high, low)
horizontal line (close)

0
5´5
5´5

VDhiloline line
either endpoint of a vertical line (high, low)
horizontal line (close)

5´5
5´5
5´5

VDline line 5´5
VDlinefill area 0
VDpoints marker 0
VDptsline marker

line
0
5´5

VDne_radial
VDradial

line 5´5

VDstep step (horizontal line only) 5´5
VDstrip

VDstripras
VDvstrip

VDvstrip_r
VDwaterfall
VDwaterfall_r

line 5´5

VPdgdfreset

Vpdgdf Functions VP Routines

Resets the display formatter associated with a data group.

void
VPdgdfreset (

DATAGROUP dgp)

VPdgdfreset resets the display formatter associated with the data group by deleting any temporary storage associated
with the display formatter. The next time the data group is displayed, it starts from the beginning, redrawing the
context before displaying any data. This routine is an alternative to VPdgcleanup for use with VPdgdraw. The next
time VPdgdraw is called, it resets the data group and draws the context before drawing data. When used with pre-9.0
display formatters, it resets the entry point of pre-9.0 display formatters to initial_draw.

VPdgdfargs
Vpdgdfargs Functions VP Routines

Data group display formatter argument utilities.

See Also
VPdgdraw, VGdgdfargs. For formatters that accept paired name-value arguments, see the Display Formatters (VD)
chapter.

Example
The following code fragment passes special arguments to a hypothetical display formatter.

NAME_VALUE_PAIR arg[2];

arg[0].name = "Argument 0";
arg[0].value = "10";
arg[1].name = "Argument 1";
arg[1].value = "20";

VPdgdfargs (dgp, arg, 2);

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdgdfargs Functions
VPdgdfaddarg Adds or replaces a specific name-value pair.
VPdgdfargs Adds the display formatter arguments.
VPdgdfdelarg Deletes a specific name-value pair.

VPdgdfaddarg

Vpdgdfargs Functions VP Routines

Adds or replaces a specific name-value pair to a data group.

void
VPdgdfaddarg (

DATAGROUP dgp,
char *name,
char *value)

VPdgdfargs

Vpdgdfargs Functions VP Routines

Adds the display formatter arguments.

void
VPdgdfargs (

DATAGROUP dgp,
NAME_VALUE_PAIR *dfargarray,
int dfargsize)

VPdgdfargs adds an array of display formatter arguments, dfargarray, to the data group, dgp. The array contains
dfargsize name-value pairs that communicate display formatter-specific information to the display formatter
associated with the data group.

A NAME_VALUE_PAIR structure contains two pointers: the first points to a name string which indicates which
value is being specified; the second points to a corresponding value string.

VPdgdfdelarg

Vpdgdfargs Functions VP Routines

Deletes a specific name-value pair, name, from a data group.

void
VPdgdfdelarg (

DATAGROUP dgp,
char *name)

VPdgdraw
Vpdgdraw Functions VP Routines

Draws and updates the context and data for data groups. Five routines constitute the basic calls for displaying data
groups. VPdgsetup sets up the required internal structures. VPdgdrcontext draws the context. VPdgtakedata and
VPdgdrdata take and display data, and are usually called in the update loop of the application. VPdgcleanup
deallocates the internal structures. The data group should be reset to reflect changes made using any VPdg or VPvd
function with the exception of the functions in the VPvdvarvalue module. Use VPdgdfreset to reset the data group.

VPdgdraw combines the setup, context drawing, initial data retrieval, and initial data display into a single call. It can
also be used in place of VPdgtakedata and VPdgdrdata in the update loop.

To draw and update data groups using pre-9.0 display formatters, use VPdgdisplay in conjunction with
VPdgdfcontext_only. See also VPdgdfentry.

See Also
VPdgdf, VGdgdf

Examples
The following code fragment sets up a data group, draw its context, and draws the first iteration of data.

flag = VPdgsetup (dgp);

/* If the display formatter can be drawn, display the context and the first data iteration.
if (flag == DV_SUCCESS)

{
VPdgdrcontext (dgp, clipvp, obsvps, V_BF_UNDISP);
VPdgtakedata (dgp);
VPdgdrdata (dgp, clipvp, obsvps, V_BF_UNDISP);

}
else

printf ("The graph cannot be set up properly.");

The following code fragment is functionally equivalent to the previous fragment, but uses VPdgdraw:
if (! (DV_SUCCESS == VPdgdraw (dgp, clipvp, obsvps)))

printf ("The display formatter cannot be drawn.");

The following code fragment sets up a data group, retrieves two new iterations of data, draws the context, and draws
the latest n iterations of data, where n equals the number of slots in the data group:

VPdgslots (dgp, 2);

flag = VPdgsetup (dgp);

VPdgtakedata (dgp);
VPdgtakedata (dgp);

/* If the display formatter can be drawn, display the context and the latest n iterations of data. */
if (flag == DV_SUCCESS)

{
VPdgdrcontext (dgp, clipvp, obsvps, V_BF_LATEST_N);
VPdgdrdata (dgp, clipvp, obsvps, V_BF_LATEST_N);

}
else

printf ("The graph cannot be set up properly.");

The following code fragment draws a data group, resizes it, and redisplays the context and original data:
VPdgdraw (dgp, clipvp, obsvps);

/* Resize the data group. */
VGdgvp (dgp, &vp);

vp.ur.x = 2*vp.ur.x;
vp.ur.y = 2*vp.ur.y;
VPdgvp (dgp, &vp);

/* Free the temporary storage for the previous display of the data group and reset the data group to its initial state. */
VPdgdfreset (dgp);

/* Set up the data group again and redisplay the previously displayed data with the new coordinates. */
if (DV_SUCCESS == VPdgsetup (dgp))

{
VPdgdrcontext (dgp, clipvp, obsvps, V_BF_DISP);
VPdgdrdata (dgp, clipvp, obsvps, V_BF_DISP);

}
else

printf ("The graph cannot be set up properly.");

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdgdraw Functions
VPdgcleanup Deallocates the temporary storage for a data group.
VPdgdfcontext_only Sets the context-draw flag.
VPdgdraw Draws the context and data for a data group.
VPdgdrawnull Draws a null representation of a data group.
VPdgdrcontext Draws the context of a data group.
VPdgdrdata Draws one or more iterations of data.
VPdgsetup Sets up the layout for a data group.
VPdgtakedata Takes one iteration of data from the data sources.
All routines that use the clipvp and obsvps parameters interpret them as defined below.

clipvp The clipping viewport. clipvp is a pointer to a rectangle structure that specifies a viewport in screen
coordinates. The data group is clipped to this viewport. If NULL, the data group is clipped to its own
viewport as returned by VGdgscreenvp.

obsvps The obscuring viewports. obsvps is a pointer to a NULL-terminated array of rectangle structures
specifying viewports in screen coordinates that obscure the data group. If NULL, clipping to obscuring
viewports is not required.

VPdgcleanup

Vpdgdraw Functions VP Routines

Deallocates the temporary storage for a data group.

void
VPdgcleanup (

DATAGROUP dgp)

VPdgcleanup deallocates the internal structures of the data group, dgp, which were set up by VPdgsetup. Should
only be called to clean up. If you need to reset the data group, use VPdgdfreset.

VPdgdfcontext_only

Vpdgdraw Functions VP Routines

Sets the context-draw flag.

int
VPdgdfcontext_only (

int flag)

VPdgdfcontext_only sets a flag that controls the initial drawing of the data group. This routine is used with both pre-
9.0 and post-9.0 display formatters. It works in conjunction with TdpDraw, VPdgdraw, and VPdgdisplay. If flag is
YES, a call to one of these routines draws only the context. If flag is NO, a call to one of these routines draws the
context together with the first data values. The default value for the flag is NO. To determine the current value of the
flag, set flag to any value other than YES or NO. Returns the old flag value.

VPdgdraw

Vpdgdraw Functions VP Routines

Draws the context and data for a data group.

BOOLPARAM
VPdgdraw (

DATAGROUP dgp,
RECTANGLE *clipvp,
RECTANGLE **obsvps)

VPdgdraw sets up the data group, dgp, draws the context, and displays data. Draws the data group clipped to the
appropriate viewports as specified by clipvp and obsvps. If the data group is already set up and the context is
displayed, retrieves and displays the next iteration of data along with any other new data. Can be used with
VPdgdfcontext_only to set up the data group and draw the context only. This routine combines most of the
functionality of VPdgsetup, VPdgdrcontext, VPdgtakedata, and VPdgdrdata, but always draws the newest data.
Returns DV_SUCCESS if successful, otherwise returns DV_FAILURE.

VPdgdrawnull

Vpdgdraw Functions VP Routines

Draws a null representation of a data group.

void
VPdgdrawnull (

DATAGROUP dgp,
RECTANGLE *clipvp,
RECTANGLE **obsvps)

VPdgdrawnull draws a filled rectangle with the text string “Graph” in place of the data group, dgp. Clips to the
appropriate viewports as specified by clipvp and obsvps.

VPdgdrcontext

Vpdgdraw Functions VP Routines

Draws the context of a data group.

BOOLPARAM
VPdgdrcontext (

DATAGROUP dgp,
RECTANGLE *clipvp,
RECTANGLE **obsvps,
int draw_flag)

VPdgdrcontext draws the context for the display formatter associated with the data group, dgp. Clips to the
appropriate viewports as specified by clipvp and obsvps. When called to redisplay data, the labels in the context
correspond to the iterations of data indicated by draw_flag. Returns DV_SUCCESS if the context is drawn;
otherwise returns DV_FAILURE. Valid values for draw_flag are:

V_BF_DISP Draw the context for the most recently displayed
iterations.

V_BF_UNDISP Draw the context for the iterations that haven’t
been displayed.

V_BF_LATEST_N Draw the context for the latest n iterations, where
n is the number of slots in the graph.

VPdgdrdata

Vpdgdraw Functions VP Routines

Draws one or more iterations of data.

BOOLPARAM
VPdgdrdata (

DATAGROUP dgp,
RECTANGLE *clipvp,
RECTANGLE **obsvps,
int draw_flag)

VPdgdrdata displays the iterations of data which correspond with the draw_flag indicated and updates the time axis.
Draws the data group, dgp, clipped to the appropriate viewports as specified by clipvp and obsvps. Returns
DV_SUCCESS if the data is displayed; otherwise returns DV_FAILURE. When this routine is called after
VPdgdrcontext to redisplay data, both should use the same value for draw_flag. Valid values are:

V_BF_DISP Draw the most recently displayed iterations.
V_BF_UNDISP Draw the iterations that haven’t been displayed.
V_BF_LATEST_N Draw the latest n iterations, where n is the

number of slots in the graph.

VPdgsetup

Vpdgdraw Functions VP Routines

Sets up the layout for a data group.

BOOLPARAM
VPdgsetup (

DATAGROUP dgp)

VPdgsetup sets up the layout for the data group, dgp, including determining if the display formatter is valid, if the
data group’s variables meet the constraints of the display formatter, and if the graph can be drawn in the viewport.
The layout information is attached to the data group, but is used by the display formatter to draw and update the data
group. Returns DV_SUCCESS if the data group is set up; otherwise returns DV_FAILURE.

VPdgtakedata

Vpdgdraw Functions VP Routines

Takes one iteration of data from the data sources.

BOOLPARAM
VPdgtakedata (

DATAGROUP dgp)

VPdgtakedata retrieves one iteration of data from the data sources associated with the data group, dgp. Returns
DV_SUCCESS if the data is retrieved; otherwise returns DV_FAILURE. Note: You can call this routine several times
without intervening calls to VPdgdrdata since the data group stores undisplayed data.

VPdgvd
Vpdgvd Functions VP Routines

Variable descriptor utilities.

See Also
VPdg, VPvd, VGdg, VGdgvd

Example
The following code fragment adds two newly created variable descriptors to a newly created data group then
reverses the order of the variables in the data group.

DATAGROUP vdp1, vdp2, dgp;
float data1, data2;

dgp = VPdgcreate();
vdp1 = VPvdcreate ((ADDRESS) &data1, V_F_TYPE);
vdp2 = VPvdcreate ((ADDRESS) &data2, V_F_TYPE);
VPdgvdadd (dgp, vdp1);
VPdgvdadd (dgp, vdp2);

VPdgvdinsert (dgp, 1, VPdgvdremove (dgp, 2));

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdgvd Functions
VPdgvdadd Adds a variable descriptor to the data group.
VPdgvdinsert Inserts a variable descriptor in the list.
VPdgvdremove Removes a variable descriptor from the list.
VPdgvdswitch Swaps a variable descriptor within the list.

VPdgvdadd

Vpdgvd Functions VP Routines

Adds a variable descriptor to the data group.

void
VPdgvdadd (

DATAGROUP dgp,
VARDESC vdp)

VPdgvdadd adds a variable descriptor, vdp, to the end of the list of variable descriptors connected to the data group,
dgp.

VPdgvdinsert

Vpdgvd Functions VP Routines

Inserts a variable descriptor in the list.

void
VPdgvdinsert (

DATAGROUP dgp,
int ndx,
VARDESC vdp)

VPdgvdinsert inserts a variable descriptor, vdp, before the ndx-th variable descriptor in the list of variable
descriptors connected to the data group, dgp.

VPdgvdremove

Vpdgvd Functions VP Routines

Removes a variable descriptor from the list.

VARDESC
VPdgvdremove (

DATAGROUP dgp,
int ndx)

VPdgvdremove removes the ndx-th variable descriptor in the list of variable descriptors connected to the data group,
dgp, and returns its address.

VPdgvdswitch

Vpdgvd Functions VP Routines

Swaps a variable descriptor within the list.

VARDESC
VPdgvdswitch (

DATAGROUP dgp,
int ndx,
VARDESC vdp)

VPdgvdswitch switches the variable descriptor, vdp, with the ndx-th variable descriptor in the list of variable
descriptors connected to the data group, dgp. Returns the address of the previous vdp.

The first variable in the list has an index of 1. The index of the last variable is provided by VGdgvd.

VPdgviewport
Vpdgviewport Functions VP Routines

Sets the viewport of a data group using virtual, screen, or normalized device coordinates.

See Also
VGdgviewport

Examples
The following code fragment sets the data group viewport to be the bottom half of the screen.

RECTANGLE vvp;

vvp.ll.x = 0;
vvp.ll.y = 0;
vvp.ur.x = 32767;
vvp.ur.y = 32767 / 2;
VPdgvp (dgp, &vvp);

The following code fragment makes a copy of a data group so that you can see the same data displayed in two
different ways in two different places.

DATAGROUP dgp, dgpnew;
GLOBALREF DISPFORM VDbar, VDline;
RECTANGLE vp1 = {0, 0, 32767, 16383}
RECTANGLE vp2 = {0, 16384, 32767, 32767}
RECTANGLE *clipvp1, *clipvp2, **obsvps;

clipvp1 = &vp1; clipvp2 = &vp2;
obsvps = NULL;

/* Convert the clipped viewports from virtual to screen coordinates. */
GRvcs_to_scs (&clipvp1.ll, &clipvp1.ll);
GRvcs_to_scs (&clipvp1.ur, &clipvp1.ur);
GRvcs_to_scs (&clipvp2.ll, &clipvp2.ll);
GRvcs_to_scs (&clipvp2.ur, &clipvp2.ur);

/* Display the original data group as a bar graph in the lower half of the screen. */
VPdgvp (dgp, &vp1);
VPdgdf (dgp, VDbar);
VPdgdraw (dgp, clipvp1, obsvps);

/* Display the original data group as a line graph in the upper half of the screen. */
dgpnew = VPdgclone (dgp);
VPdgvp (dgpnew, &vp2);
VPdgdf (dgpnew, VDline);
VPdgdraw (dgp, clipvp2, obsvps);

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPdgviewport Functions
VPdgNDCvp Sets the viewport of a data group in normalized device coordinates.
VPdgscreenvp Sets the viewport of a data group in screen coordinates.
VPdgvp Sets the viewport of a data group in virtual coordinates.

VPdgNDCvp

Vpdgviewport Functions VP Routines

Sets the viewport of a data group in normalized device coordinates.

void
VPdgNDCvp (

DATAGROUP dgp,
FLOAT_POINT *ll,
FLOAT_POINT *ur)

VPdgNDCvp defines the viewport that contains the data group, dgp, using normalized device coordinates, ll and ur.
Normalized device coordinates are floats where (0.0, 0.0) corresponds to the lower left of the screen and (1.0, 1.0)
corresponds to the upper right of the screen. For example, if the viewport was zoomed to twice the width and height
of the screen, the viewport’s normalized device coordinates could be ll = (0.0, 0.0) and ur = (2.0, 2.0).

VPdgscreenvp

Vpdgviewport Functions VP Routines

Sets the viewport of a data group in screen coordinates.

void
VPdgscreenvp (

DATAGROUP dgp,
RECTANGLE *scvp)

VPdgscreenvp defines the viewport that contains the data group, dgp, using screen coordinates. scvp is a pointer to a
RECTANGLE data structure. In screen coordinates, (0, 0) corresponds to the lower left corner of the screen and the
upper right corner depends on the size of the screen.

VPdgvp

Vpdgviewport Functions VP Routines

Sets the viewport of a data group in virtual coordinates.

void
VPdgvp (

DATAGROUP dgp,
RECTANGLE *vvp)

VPdgvp defines the viewport that contains the data group display using virtual coordinates. vvp is a pointer to a
RECTANGLE data structure. In virtual coordinates, (0, 0) corresponds to the lower left corner of the screen and
(32767, 32767) corresponds to the upper right corner.

VPvd
Vpvd Functions VP Routines

Manipulates the basic aspects of the variable descriptors.

See Also
VPdg, VPdgvd, VGdgvd, VGvd

Examples
The following code fragment creates a variable descriptor for a float variable called data.

VARDESC vdp;
LOCAL float data;
vdp = VPvdcreate ((ADDRESS) &data, V_F_TYPE);

VPvdclone is useful for applications where the same data is included in several different displays. The following
code fragment illustrates this.

/* Create two data groups, dgp1, dgp2 */
...

/* Create a variable descriptor, vdp */
...

/* Add it to the two data groups */
VPdgvdadd (dgp1, VPvdclone (vdp));
VPdgvdadd (dgp2, vdp);

The following code fragment specifies the dimensions for several example variables.
{
LOCAL VARDESC scalar_vdp, vector_vdp, matrix_vdp, buffered_scalar_vdp;
LOCAL int scalar, vector[5], matrix[3][4], buffered_scalar[10];
. . .
scalar_vdp = VPvdcreate ((ADDRESS) &scalar, V_I_TYPE);
vector_vdp = VPvdcreate ((ADDRESS) vector, V_I_TYPE);
matrix_vdp = VPvdcreate ((ADDRESS) matrix, V_I_TYPE);
buffered_scalar_vdp = VPvdcreate ((ADDRESS) &buffered_scalar, V_I_TYPE);

VPvddim (scalar_vdp, 1, 1, 1);
VPvddim (vector_vdp, 1, 1, 5);
VPvddim (matrix_vdp, 1, 3, 4);
VPvddim (buffered_scalar_vdp, 10, 1, 1);
Describe (scalar_vdp);
Describe (vector_vdp);
Describe (matrix_vdp);
Describe (buffered_scalar_vdp);
. . .
}

Describe (vdp)
VARDESC vdp;

{
int d1, d2, d3;

VGvddim (vdp, &d3, &d2, &d1);

printf ("The variable is a");
if (d3 > 1)

printf (" time-buffered");
if (d1 == 1)

if (d2 == 1)
printf (" scalar\n");

else
printf (" column vector\n");

else if (d2 == 1)
printf (" row vector\n");

else
printf (" matrix\n");

}

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPvd Functions
VPvdclone Makes a copy of a variable descriptor.
VPvdcreate Creates a variable descriptor.
VPvddelete Deletes a variable descriptor, freeing the associated memory.
VPvddereference Decrements the variable descriptor’s reference count.
VPvddim Specifies the dimensions of a variable.
VPvdreference Increments the variable descriptor’s reference count.
VPvdtype Defines the type of a variable descriptor.

VPvdclone

Vpvd Functions VP Routines

Makes a copy of a variable descriptor.

VARDESC
VPvdclone (

VARDESC vdp)

VPvdclone allocates space for and makes a copy of the specified variable descriptor, vdp, without attaching the copy
to any data structures. Returns the address of the copy. After the copy is made, changes to the original are not
reflected in the copy.

VPvdcreate

Vpvd Functions VP Routines

Creates a variable descriptor.

VARDESC
VPvdcreate (

ADDRESS var_address,
int var_type)

VPvdcreate creates a new variable descriptor with appropriate default values. The routine selects a color from a table
of default colors and assigns that color to the variable, while ensuring that consecutively created variable descriptors
are not assigned the same color. The routine expects the base address of the variable and a flag describing its data
type.

Valid data types are:

Flag Data Type Size in bits
V_C_TYPE char 8
V_UC_TYPE unsigned char,

UBYTE
8

V_S_TYPE short 16
V_US_TYPE unsigned short 16
V_L_TYPE int, LONG 32
V_UL_TYPE unsigned int, ULONG 32
V_F_TYPE float 32 (or 64 for some systems)
V_D_TYPE double 64 (or 128 for some systems)
V_T_TYPE NULL-terminated

string
no set size

Returns a pointer to the newly created variable descriptor.

VPvddelete

Vpvd Functions VP Routines

Deletes a variable descriptor, freeing the associated memory.

void
VPvddelete (

VARDESC vdp)

VPvddelete removes the variable descriptor from the list in which it resides and frees all allocated memory.

VPvddereference

Vpvd Functions VP Routines

Decrements the variable descriptor’s reference count.

void
VPvddereference (

VARDESC vdp)

VPvddereference decrements the reference count for a variable descriptor. If the count reaches zero, it deletes the
variable descriptor. The reference count starts at zero when the variable descriptor is created.

VPvddim

Vpvd Functions VP Routines

Specifies the dimensions of a variable.

void
VPvddim (

VARDESC vdp,
int dim3,
int dim2,
int dim1)

VPvddim specifies the dimensions of a variable as a scalar, vector, or matrix and specifies the vector or matrix size.
dim3 gives the number of time slices in the data. This allows buffering of the data before calling the display
formatter and increases the routine’s efficiency. dim3 is typically set to 1. dim2 specifies the number of rows in the
variable; dim1 specifies the number of columns.

VPvdreference

Vpvd Functions VP Routines

Increments the variable descriptor’s reference count.

VARDESC
VPvdreference (

VARDESC vdp)

VPvdreference increments the reference count for a variable descriptor. The reference count starts at zero when the
variable descriptor is created.

VPvdtype

Vpvd Functions VP Routines

Defines the type of a variable descriptor.

void
VPvdtype (

VARDESC vdp,
int var_type)

VPvdtype defines the type of the variable described by the variable descriptor. The type is defined when the variable
descriptor is initially created using VPvdcreate. Valid data types are:

Flag Data Type Size in bits
V_C_TYPE char 8
V_UC_TYPE unsigned char,

UBYTE
8

V_S_TYPE short 16
V_US_TYPE unsigned short 16
V_L_TYPE int, LONG 32
V_UL_TYPE unsigned int, ULONG 32
V_F_TYPE float 32 (or 64 for some systems)
V_D_TYPE double 64 (or 128 for some systems)
V_T_TYPE NULL-terminated

string
no set size

VPvdaccess
Vpvdaccess Functions VP Routines

Access routines for variable descriptors.

See Also
VPvd, VGvdaccess

Examples
The following code sets up a 10 element window in a 100 element vector. This window can move around in the
vector to show different portions of it.

LOCAL int data[100], *datap;
datap = &data[0];
RECTANGLE *clipvp, **obsvps;
obsvps = NULL;

VGdgscreenvp (dgp, &clipvp);

/* datap initially points to beginning of array. */
vdp = VPvdcreate ((ADDRESS) &datap, V_I_TYPE);
VPvd_accmode (vdp, V_INDIR_ACCESS);
VPvddim (vdp, 1, 1, 10);

/* When the datagroup containing the variable descriptor is displayed, */
/* the display plots the first ten elements of the array data. */
VPdgdraw (dgp, clipvp, obsvps);
datap = &data[90];

/* The last 10 elements of the array are displayed. */
VPdgdraw (dgp, clipvp, obsvps);

The following code fragment is an access function that simulates a 20 by 20 identity matrix.
typedef struct
{

int current_row, current_column;
float LastValue;

} ARG_BLOCK;

ADDRESS access_function (argp, i3, i2, i1)
ARG_BLOCK *argp;
int i3, i2, i1;

{

/* Return address of the most recent actual value? */
if (i3 == -2) return (ADDRESS) &argp->LastValue;

/* Do we need to get the next entry? */
if (i3 == -1)

{
/* Update the pointer to the current position in the array. */
argp->current_column++;
if (argp->current_column >= 20)

{
argp->current_column = 0;
argp->current_row++;

}
i1 = argp->current_column;
i2 = argp->current_row;
i3 = 0;

}
if (i3 != 0 || i2 < 0 || i2 >= 20 || i1 < 0 || i1 >= 20)

{

/* Index out of range: return V_UNDEFINED. */
argp->LastValue = -1;
return (ADDRESS)-1;

}

else if (i1 == i2)
{
 /* Along diagonal: return maximum value. */

argp->LastValue = 1;
return (ADDRESS)32767;

}
else

{
/* Return minimum value. */

argp->LastValue = 0;
return (ADDRESS)0;

}
}

/* This section of code defines the variable descriptor.
 * Note that you don’t need to specify a data address because
 * the access function simulates the data. */
VARDESC vdp;
ARG_BLOCK arg = { 0, 0, 0 };

vdp = VPvdcreate (NULL, V_L_TYPE);
VPvdaccess (vdp, (VGADDRACCESSFUNPTR) access_function, (ADDRESS) &arg,

sizeof (ARG_BLOCK));

The following code fragment verifies that the variable descriptor base address is set properly.
float data, newdata;
VARDESC vdp;

RECTANGLE *clipvp, ** obsvps;
obsvps = NULL;

VGdgscreenvp (dgp, &clipvp);

vdp = VPvdcreate ((ADDRESS) &data, V_F_TYPE);

/* Change the variable being pointed to by variable descriptor */
VPvdbase (vdp, (ADDRESS) &newdata);

/* The last 10 elements of the array are displayed. */
VPdgdraw (dgp, clipvp, obsvps);

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPvdaccess Functions
VPvd_accmode Sets the data access mode to direct or indirect.
VPvdaccess Defines the data access function for the data described by a

variable descriptor.
VPvdbase Sets the base address of a variable descriptor.

VPvd_accmode

Vpvdaccess Functions VP Routines

Sets the data access mode to direct or indirect.

void
VPvd_accmode (

VARDESC vdp,
int accessmode)

VPvd_accmode specifies how to interpret the base address of the variable descriptor, vdp. If the access mode,
accessmode, is direct, the base address is interpreted as the actual address of the data to be displayed. If accessmode
is indirect, the address is interpreted as the address of a pointer to the data. The indirect mode allows moving the
data without notifying DataViews and without resetting anything in the variable descriptor. By default, the variable
descriptor is set to direct access.

The valid flag values are:

V_DIR_ACCESS Direct access.
V_INDIR_ACCESS Indirect access.
V_DS_BOUND Indirect access through a DataViews data

source variable.

VPvdaccess

Vpvdaccess Functions VP Routines

Defines the data access function for the data described by a variable descriptor.

void
VPvdaccess (

VARDESC vdp,
VGADDRACCESSFUNPTR fcnp,
ADDRESS argp,
int argsize)

ADDRESS
fcnp (

ADDRESS argp,
int i3,
int i2,
int i1)

VPvdaccess specifies an access function that is used by the dynamic update routines and the display formatter to get
the value of the data associated with the variable descriptor, vdp. Novice users can disregard this function since the
default access function is usually sufficient. The remaining information in this section is intended for sophisticated
DataViews users who are writing their own access functions.

The access function returns a value in the range [0,32767], where 0 corresponds to the data’s minimum value as set
by a call to VPvd_irange or VPvd_drange, and 32767 corresponds to the data’s maximum value. If the value is
undefined, the routine returns -1.

Access functions used by display formatters assume that data being displayed has three dimensions, any of which
can be of size one. Thus, a scalar has dimension (1,1,1). This dimension is set by calling VPvddim. The display
formatter indexes through the data, calling the access function as follows:

data_value = access_function (argp, i3, i2, i1);

where i1 is in the range [0,dim1], i2 is in the range [0,dim2], and i3 is in the range [0,dim3] as set by VPvddim.

Alternatively, i3 can have special values that the access function must respond to:

If i3 = -1, the access function increments to the next location and returns the value contained in that new
location. In this case, the other index arguments are ignored. This optimizes the case where the display
formatter is stepping through a matrix. The display formatter calls the access function with a non-negative
value first to initialize the location.

If i3 = -2, the access function returns a pointer to the most recently returned actual data value, instead of to the
normalized value. The pointer points to a float or a LONG, depending on the type of the variable descriptor.
This is for cases where the display formatter needs a more exact representation, such as the digits graph.

The access function can return an integer or an address, so it is declared to be of type ADDRESS, which is large
enough to contain an int.

The argument block pointed to by argp is copied and saved as part of the variable descriptor. The pointer to this
copy is passed to the access function when it is actually called.

This function is not intended for text variable descriptors of type V_T_TYPE.

VPvdbase

Vpvdaccess Functions VP Routines

Sets the base address of a variable descriptor.

void
VPvdbase (

VARDESC vdp,
ADDRESS newbase)

VPvdbase sets the base address of a variable in a variable descriptor, vdp. This replaces the base address defined
when the variable descriptor was created using VPvdcreate. The variable’s base address is its memory location.

VPvdcolor
Vpvdcolor Functions VP Routines

Utilities for specifying the variable color.

See Also
VPvd, VGvdctt

Example
The following code fragment sets up a color threshold table that displays the data in green if it is in the lower 90% of
its range, and in red if it is in the top 10% of its range.

COLOR_THRESHOLD ct[2];

ct[0].threshcolor.rgb_rep.rgb_rep_flag = -1;
ct[0].threshcolor.rgb_rep.red = 0;
ct[0].threshcolor.rgb_rep.green = 255;
ct[0].threshcolor.rgb_rep.blue = 0;
ct[0].upperlimit = 9 * 32767 / 10;

ct[1].threshcolor.rgb_rep.rgb_rep_flag = -1;
ct[1].threshcolor.rgb_rep.red = 255;
ct[1].threshcolor.rgb_rep.green = 0;
ct[1].threshcolor.rgb_rep.blue = 0;
ct[1].upperlimit = 32767;

VPvdctt (vdp, 2, ct);

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPvdcolor Functions
VPvdclrndx Sets the color using the lookup table index.
VPvdctt Specifies the color threshold table.
VPvdcttscale Specifies linear or log scale for a color threshold table.
VPvdrgb Specifies the color using the RGB format.

VPvdclrndx

Vpvdcolor Functions VP Routines

Sets the color using the lookup table index.

void
VPvdclrndx (

VARDESC vdp,
int clrndx)

VPvdclrndx sets the color using the device-dependent color lookup table index.

VPvdctt

Vpvdcolor Functions VP Routines

Specifies the color threshold table.

void
VPvdctt (

VARDESC vdp,
int num_colors,
COLOR_THRESHOLD *ctp)

VPvdctt specifies a color threshold table for the variable. This table associates colors with ranges of data values. It
contains a list of color specifications in either RGB or color index form, together with associated normalized data
values (thresholds). The display formatter uses the last color with an associated threshold greater than or equal to the
data value. Thresholds are normalized in the range [0,32767], where 0 corresponds to the variable’s minimum value
and 32767 corresponds to its maximum value as set by a call to VPvd_irange or VPvd_drange.

A color threshold table has the following structure:

1: color, limit;
2: color, limit;
...
n: color, limit;

where limit[i] > limit[j] when i>j; limit[n] = 32767. The data is displayed using color[i] when the normalized data
value is limit[i-1] < value <= limit[i]; and where limit[0] is defined as zero.

VPvdcttscale

Vpvdcolor Functions VP Routines

Specifies linear or log scale for a color threshold table.

void
VPvdcttscale (

VARDESC vdp,
int log_flag)

VPvdcttscale converts the limits of the color threshold table attached to vdp to log or linear, depending on the value
of log_flag. YES indicates that the color threshold table limits should be log. This function is called automatically by
VPvdlog, so the user should call it only to convert the limits of a color threshold table that is attached after the call to
VPvdlog.

VPvdrgb

Vpvdcolor Functions VP Routines

Specifies the color using the RGB format.

void
VPvdrgb (

VARDESC vdp,
int r,
int g,
int b)

VPvdrgb sets the color in RGB format. RGB format specifies a color using three numbers in the range [0,255],
where each number corresponds to the intensity of one of the additive primary colors: red, green, and blue. The
display formatter selects the color closest to the specified color, given the color lookup table for the device.

VPvdcontext
Vpvdcontext Functions VP Routines

Manages the context for variable descriptors.

See Also

VPdgcontext, VPvd, VGvdcontext

Examples
The following code fragment illustrates how to set a value label.

VPvdvallabel (vdp, "Velocity in feet per second");

The following code fragment illustrates how to name a variable descriptor.
VARDESC vdp;
LOCAL float revenue;

vdp = VPvdcreate ((ADDRESS) &revenue, V_F_TYPE);
VPvdvarname (vdp, "REVENUE");

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPvdcontext Functions
VPvdlog Specifies log or linear scaling for a variable descriptor.
VPvdltype Sets the line type of a variable descriptor.
VPvdlwidth Sets the line width of a variable descriptor.
VPvdsymbol Defines the symbol used to encode a data value.
VPvdticlabfcn Assigns the tick labeling function to a value axis.
VPvdvallabel Specifies the value axis label for a variable.
VPvdvarname Specifies the name of a variable.

VPvdlog

Vpvdcontext Functions VP Routines

Specifies log or linear scaling for a variable descriptor.

void
VPvdlog (

VARDESC vdp,
int flag)

VPvdlog specifies whether the variable is of log type. If the variable has a log flag of YES, the display formatter
computes the log before displaying the variable.

VPvdltype

Vpvdcontext Functions VP Routines

Sets the line type of a variable descriptor.

void
VPvdltype (

VARDESC vdp,
int type)

VPvdltype sets the line type of the variable descriptor, vdp, to the line type, type. type is a number between 1 and 15
(inclusive) corresponding to one of 15 line types, which have device dependent interpretations. The default value of
1 corresponds to a solid black line.

VPvdlwidth

Vpvdcontext Functions VP Routines

Sets the line width of a variable descriptor.

void
VPvdlwidth (

VARDESC vdp,
int width)

VPvdlwidth sets the width of the line of the variable descriptor, vdp to the width, width. The minimum width is 1; the
maximum width is 255. Reasonable widths are in the range of 1 to 5, where 5 generates a line 5 pixels wide. The
default width is 1.

VPvdsymbol

Vpvdcontext Functions VP Routines

Defines the symbol used to encode a data value.

void
VPvdsymbol (

VARDESC vdp,
int symbol)

VPvdsymbol sets the symbol field in the attributes section for the variable descriptor. symbol specifies the marker
used to display the data defined by the variable descriptor. This symbol is not used by some display formatters.

The symbol flag can have one of the following values:

V_NULL_SYMBOL ’ ’ Default
V_ASTERISK ’*’ Asterisk
V_DOT ’.’ Dot
V_PLUS ’+’ Plus
V_CROSS ’x’ X
V_DIAMOND ’d’ Diamond
V_FILLED_DIAMOND ’D’ Filled Diamond
V_CIRCLE ’o’ Circle
V_FILLED_CIRCLE ’O’ Filled Circle
V_BOX ’r’ Box
V_FILLED_BOX ’R’ Filled Box
V_TRIANGLE ’t’ Triangle (apex up)
V_FILLED_TRIANGLE ’T’ Filled Triangle (apex up)
V_INVERTED_TRIANGLE ’v’ Triangle (apex down)
V_FILLED_INVERTED_TRIANGL

E
 ’V’ Filled Triangle (apex down)

V_TRIANGLE_RIGHT ’)’ Triangle (apex right)
V_FILLED_TRIANGLE_RIGHT ’>’ Filled Triangle (apex right)
V_TRIANGLE_LEFT ’(’ Triangle (apex left)
V_FILLED_TRIANGLE_LEFT ’<’ Filled Triangle (apex left)
V_VERTICAL_LINE ’|’ Vertical Line
V_HORIZONTAL_LINE ’-’ Horizontal Line

If the symbol value is NULL, the default display formatter is used.

VPvdticlabfcn

Vpvdcontext Functions VP Routines

Assigns the tick labeling function to a value axis.

void
VPvdticlabfcn (

VARDESC vdp,
DV_TICLABELFUNPTR ticlabelfunc,
char *argp,
int argsize)

void
ticlabelfunc (

ADDRESS argpcopy,
double *value,
ADDRESS output,
TIC_DATA *tdp)

VPvdticlabfcn assigns a tick labeling function for the value axis, ticlabelfunc, to a variable descriptor, and allocates
memory for a copy of the function’s arguments, a structure of argsize bytes at address argp.

VPdgticlabfcn describes the tick labeling function ticlabelfunc, its arguments, and how it is called.

VPvdvallabel

Vpvdcontext Functions VP Routines

Specifies the value axis label for a variable.

void
VPvdvallabel (

VARDESC vdp,
char *label)

VPvdvallabel assigns a label to the value axis associated with a variable. The value axis label of a variable typically
appears on the vertical axis of a display formatter using scalar data when that variable is the first one attached to the
data group.

VPvdvarname

Vpvdcontext Functions VP Routines

Specifies the name of a variable.

void
VPvdvarname (

VARDESC vdp,
char *name)

VPvdvarname assigns the character string to be used as the name of the variable.

VPvdrange
Vpvdrange Functions VP Routines

The variable value range utilities.

See Also
VPvd, VGvdrange

Examples
The following calls are equivalent:

VPvd_drange (vdp, 0.0, 100.0);

VPvd_irange (vdp, 0, 100);

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

Functions
VPvd_drange Sets the range delimiters as double precision floats.
VPvd_irange Sets the range delimiters as integers.

These routines define the highest and lowest values the specified variable can have. If the data value is outside this
range, it is adjusted to the closest value by the display formatter.

You can use either of these routines independently of the variable type, since the routines handle the necessary
conversions.

VPvd_drange

Vpvdrange Functions VP Routines

Sets the range delimiters as double precision floats.

void
VPvd_drange (

VARDESC vdp,
double low,
double high)

VPvd_drange specifies the range delimiters as double precision floating point numbers.

VPvd_irange

Vpvdrange Functions VP Routines

Sets the range delimiters as integers.

void
VPvd_irange (

VARDESC vdp,
int low,
int high)

VPvd_irange specifies the range delimiters as integers.

VPvdvarvalue
Vpvdvarvalue Functions VP Routines

Routines to set variables associated with variable descriptors.

See Also
VPvd, VGvdvarvalue

VPdg VPdgdfargs VPvd VPvdcontext
VPdgcolor VPdgdraw VPvdaccess VPvdrange
VPdgcontext VPdgvd VPvdcolor VPvdvarvalue
VPdgdf VPdgviewport

VPvdvarvalue Functions
VPvdDValue Puts a double value in the base address.
VPvdIValue Puts an integer value in the base address.
VPvdSValue Puts a string value in the base address.
VPvdValue Puts a value in the base address.

VPvdDValue

Vpvdvarvalue Functions VP Routines

Puts a double value in the base address.

void
void (

VARDESC vdp,
double value)

VPvdDValue puts a double value at the base address. If the destination type is a string, the routine formats the
number in ASCII and copies the ASCII value to the destination.

VPvdIValue

Vpvdvarvalue Functions VP Routines

Puts an integer value in the base address.

void
VPvdIValue (

VARDESC vdp,
int value)

VPvdIValue puts an integer value at the base address. If the destination type is a string, the routine formats the
number in ASCII and copies the ASCII value to the destination.

VPvdSValue

Vpvdvarvalue Functions VP Routines

Puts a string value in the base address.

void
VPvdSValue (

VARDESC vdp,
char *value)

VPvdSValue puts a string value at the base address. If the destination type is numeric, the routine tries to get the
number from the string by scanning it. If it fails to scan it, value is not set.

VPvdValue

Vpvdvarvalue Functions VP Routines

Puts a value in the base address.

void
VPvdValue (

VARDESC vdp,
ADDRESS value)

VPvdValue puts a value at the position specified by the variable descriptor. The variable is assumed to be a scalar so
it puts the value in the position specified by the base address. The type of the value argument depends on the type of
the variable. If the variable is one of the integer types, then value is a pointer to an int. If the variable is a floating
point type, value must be a pointer to a double. If the variable is text type, value must be a pointer to a NULL-
terminated string of chars. With a text type variable, VPvdValue checks the space available before copying the string
to the address. The available space is defined by the dimension of the variable. If the dimension is 1 (scalar), the
available space is the length of the current string.

VT Routines
Hash and symbol table management routines.

VT Modules
All modules in the VT layer require the following headers:

#include "std.h"
#include "dvstd.h"
#include "VTfundecl.h"

VThash Hashed symbol table management routines.
VTsymbol Symbol table management routines.

VThash
Vthash Functions VT Routines

Hashed symbol table management routines. Hashed symbol tables are dynamic linear hash tables, which are
incrementally expanded according to an algorithm described in the Communications of the Association for
Computing Machinery, April 1988, Vol. 31, No. 4, pp. 446-457. A hash table is composed of a header and a list of
hash table nodes pointed to by the header. Each hash table node is composed of a key, a key code, and a value.

The key is an unsigned long integer or a pointer to a user-defined data structure such as a string containing a symbol
name. When the key is user-defined, the data structure must be maintained by the user and should not be changed
while it is in the table.

The key code, which is always an unsigned long integer, is the number that is hashed to determine the position of the
node in the table. The key code is a user-defined function of the key.

The value is an unsigned long integer or a pointer to a user-defined data structure. This is the entity associated with
the key and retrieved when the key is referenced. The caller is responsible for managing the allocation of the data
structures pointed to by the key or value. This means that symbol names must stay around as long as the keys that
point to them are in a symbol table. Similarly, if the symbol node value is a pointer, you must make sure the symbol
node value always points to something meaningful. When you delete a node, you must free any memory used to
store the objects pointed to by the node.

The routines use the following naming conventions: ht for hash table, and hn for hash table node.

Example
This code segment creates a hash table for data areas in a program:

static int idata1, idata2, idata3;
typedef ADDRESS HASHTABLE, HASHNODE, HASHVALUE;
typedef char *HASHKEY;
HASHTABLE ht;
HASHNODE hn;

/* Create hash table for integer data. */
ht = VThtcreate ("Integer data",

(VTHTCONVERTFUNPTR) VThtstrconvert, (VTHTCOMPAREFUNPTR) strcmp);
VThthninsert (ht, "idata1", &idata1);
VThthninsert (ht, "idata2", &idata2);
VThthninsert (ht, "idata3", &idata3);

/* Print the value for data location &idata1 */
hn = VThtvalfind (ht, NULL, &idata1);
printf ("The name of the location is: %s",

VThnkey (hn));

/* Print the value associated with the name idata1 */
hn = VThtkeyfind (ht, "idata1");

printf ("The value associated with ’idata1’ is %d.", *(int *) VThnvalue (hn));
. . .
VThtdestroy (ht, NULL, NULL);

VThash VTsymbol

VThash Functions
VThnkey Returns specified hash table node key.
VThnsetvalue Sets hash table node value.
VThnvalue Returns hash table node value.
VThtcountval Returns number of nodes with specific value.
VThtcreate Creates hash table, no size specified.
VThtdestroy Destroys hash table.
VThtget Returns address of hash table.
VThthnget Returns address of indexed node.
VThthninsert Inserts node in hash table.
VThthnremove Removes node from hash table.
VThtkeyfind Returns address of specified key in hash table.
VThtlen Returns number of nodes in hash table.
VThtstats Prints statistics about the hash table.
VThtstrconvert Converts string keys to key codes.
VThttraverse Traverses hash table and calls specified function.
VThtvalfind Finds hash table node with specified value.
For the purposes of this description the data structures are defined as follows:

typedef ADDRESS HASHTABLE;
typedef ADDRESS HASHNODE;
typedef ULONG KEY; or typedef ADDRESS KEY;
typedef ULONG VALUE; or typedef ADDRESS VALUE;

VThnkey

VThash Functions VT Routines

Returns the key associated with the specified hash table node.

KEY
VThnkey (

HASHNODE hnp)

VThnsetvalue

VThash Functions VT Routines

Sets the value associated with the hash table node.

void
VThnsetvalue (

HASHNODE hnp,
VALUE newvalue)

VThnvalue

VThash Functions VT Routines

Returns the value associated with the hash table node.

VALUE
VThnvalue (

HASHNODE hnp)

VThtcountval

VThash Functions VT Routines

Returns a count of the nodes in the hash table with the specific value.

int
VThtcountval (

HASHTABLE htp,
VALUE searchval)

VThtcreate

VThash Functions VT Routines

Creates hash table, no size specified.

HASHTABLE
VThtcreate (

char *table_name,
VTHTCONVERTFUNPTR convert_key,
VTHTCOMPAREFUNPTR compare)

ULONG
convert_key (

KEY newkey)

int
compare (

KEY key1,
KEY key2)

VThtcreate creates a new hash table with the specified table_name. If a hash table with that name already exists,
returns the address of that hash table. Otherwise returns the address of the newly created hash table. If table_name is
NULL, a table is created with no name.

When a table is created, two functions can be associated with it. The first is convert_key, which converts the key into
an unsigned long integer key code. If this function is not specified, the key code is the same as the key. If the key is
a pointer to a string, use VThtstrconvert to convert the string to a key code. The second function that can be specified
is compare, which compares two keys. This function should be specified if the keys are pointers to user-defined data
structures. It should return a zero if the keys are equal and non-zero if they are different. If the keys are pointers to
strings, you can use the system function strcmp.

VThtdestroy

VThash Functions VT Routines

Destroys hash table.

void
VThtdestroy (

HASHTABLE htp,
VTHTFREEKEYFUNPTR freekey,
VTHTFREEVALFUNPTR freevalue)

void
freekey (

KEY key)

void
freevalue (

VALUE value)

VThtdestroy destroys the hash table and frees the memory required to store the hash table. In addition, specifying the
functions freekey or freevalue calls the functions with the key or value as the node is freed. This lets you write a
function to free the node and the data structures pointed to by the node at the same time.

VThtget

VThash Functions VT Routines

Returns the address of the hash table with the specified name.

HASHTABLE
VThtget (

char *ht_name)

VThthnget

VThash Functions VT Routines

Returns address of indexed node.

HASHNODE
VThthnget (

HASHTABLE htp,
int index)

VThthnget returns the address of the index-th node in the specified hash table. Note that, as in C, indexing is zero
based, which means the index of the first node is zero and the index of the last node is the hash table length
(returned by VThtlen) minus one. It is inefficient to use this routine to index through a table since the hash table is
not sorted in any predictable, useful way. This is different from the VTs * symbol table routines which are sorted and
easily indexed. If you need to apply a function to the entries in a table it is better to use VThttraverse.

VThthninsert

VThash Functions VT Routines

Inserts a node in a hash table and returns the address of the inserted node.

HASHNODE
VThthninsert (

HASHTABLE htp,
KEY newkey,
VALUE newvalue)

VThthnremove

VThash Functions VT Routines

Removes the specified node from a hash table.

void
VThthnremove (

HASHTABLE htp,
HASHNODE hnp)

VThtkeyfind

VThash Functions VT Routines

Returns address of specified key in hash table.

HASHNODE
VThtkeyfind (

HASHTABLE htp,
KEY searchkey)

VThtkeyfind returns the address of the hash table node that has the specified key. Returns NULL if searchkey is not
associated with a node.

VThtlen

VThash Functions VT Routines

Returns number of nodes in the specified hash table.

int
VThtlen (

HASHTABLE htp)

VThtstats

VThash Functions VT Routines

Prints statistics about the hash table.

void
VThtstats (

HASHTABLE htp)

VThtstrconvert

VThash Functions VT Routines

Converts string keys to key codes.

ULONG
VThtstrconvert (

char *s)

VThtstrconvert converts a key that is a pointer to a string into a key code. The routine scrambles the characters in the
string into an unsigned long integer, cycling through the bytes in the key code and XORing the characters of the
string into it. This generates a number that creates a good distribution of hash codes.

VThttraverse

VThash Functions VT Routines

Traverses hash table and calls specified function.

void
VThttraverse (

HASHTABLE htp,
VTHTTRAVERSEFUNPTR fcn,
ADDRESS args)

void
fcn (

KEY key,
VALUE value,
ADDRESS args)

VThttraverse traverses the hash table, calling the specified function with the key and value from each node as well
as the args parameter.

VThtvalfind

VThash Functions VT Routines

Finds hash table node with specified value.

HASHNODE
VThtvalfind (

HASHTABLE htp,
HASHNODE hnp,
VALUE searchval)

VThtvalfind finds the next hash table node that has the specified value. The routine expects a pointer to a hash table,
a pointer to hash node in that table, and a value. The routine starts searching at the next node after the given node. If
the node pointer is NULL, it starts at the beginning. Returns the address of the next node with the specified value.
Returns NULL if there is no such node.

VTsymbol
Vtsymbol Functions VT Routines

Symbol table management routines. A symbol table is composed of a header and a list of symbol table nodes pointed
to by the header. Each symbol table node is composed of a key, which is usually a pointer to a character string (the
symbol), and a value, which is usually a pointer to the named by the object. The list of symbol table nodes is sorted
in increasing order by key, where the order of the keys is defined by a comparison function. A pointer to the
comparison function is kept in the symbol table header. The default comparison function interprets the keys as
addresses to strings and returns the lexicographic ordering of the two strings. For more information about the
comparison function, see the description of VTstcreate.

The VT routines allocate space from the heap for the tables. The caller must manage the memory space for the
objects pointed to by the symbol table nodes.This means that symbol names must stay around as long as the keys
that point to them are in a symbol table. Similarly, if the symbol node is a pointer, you must make sure the symbol
node value always points to something meaningful. When you delete a node, you must free any memory used to
store the objects pointed to by the node.

The routines use the following naming conventions: st for symbol table; and sn for symbol table node. Note that the
declarations refer to data types SYMTABLE (symbol table) and SYMNODE (symbol node). These types are defined
in dvstd.h.

Example
This code fragment creates symbol tables for data areas in a program:

static float data1, data2, data3;
static int idata1, idata2, idata3;

SYMTABLE float_st, int_st;
SYMNODE sn;

/* Create the symbol table for floating point data. */
float_st = VTstcreate ("Float data", NULL);
VTstsninsert (float_st, "data1", (int *) &data1);
VTstsninsert (float_st, "data2", (int *) &data2);
VTstsninsert (float_st, "data3", (int *) &data3);

/* Create the symbol table for integer data. */
int_st = VTstcreate ("Integer data", NULL);
VTstsninsert (int_st, "idata1", &idata1);
VTstsninsert (int_st, "idata2", &idata2);
VTstsninsert (int_st, "idata3", &idata3);

/* Print the symbol for data location &idata1 */
printf ("The name of the location is: %s",

VTsnkey (VTstvalfind (int_st, NULL, &idata1)));

Diagnostics
Since these routines use NULL keys to terminate a symbol table, do not use NULL as a key value. If you need to
include NULL in symbol tables, make the keys pointers to a NULL object.

VThash VTsymbol

VTsymbol Functions
#include hashtypes.h

VTsnkey Returns specified symbol table node key.
VTsnprint Prints specified symbol table node contents.
VTsnsetvalue Sets symbol table node value.
VTsnvalue Returns symbol table node value.
VTstcountval Returns number of nodes with specific value.
VTstcreate Creates symbol table, no size specified.
VTstdestroy Destroys symbol table.
VTstget Returns address of symbol table.
VTstkeyfind Returns address of specified key in symbol table.
VTstlen Returns number of nodes in symbol table.
VTstsizecreate Creates symbol table, specifies size.
VTstsnget Returns address of indexed node.
VTstsninsert Inserts node in symbol table.
VTstsnremove Removes node from symbol table.
VTsttraverse Traverses symbol table, calls specified function.
VTstvalfind Finds symbol table node with specified value.

VTsnkey

Vtsymbol Functions VT Routines

Returns the key associated with the specified symbol table node.

char *
VTsnkey (

SYMNODE snp)

VTsnprint

Vtsymbol Functions VT Routines

Prints specified symbol table node contents.

void
VTsnprint (

char *key,
int *value)

VTsnprint prints the contents of the specified symbol table node, assuming that key is a pointer to a string and value
is an address.

VTsnsetvalue

Vtsymbol Functions VT Routines

Sets the value associated with the symbol table node.

void
VTsnsetvalue (

SYMNODE snp,
int *newvalue)

VTsnvalue

Vtsymbol Functions VT Routines

Returns the value associated with the symbol table node.

int *
VTsnvalue (

SYMNODE snp)

VTstcountval

Vtsymbol Functions VT Routines

Returns a count of the nodes with the specified value in the symbol table.

int
VTstcountval (

SYMTABLE stp,
int *searchval)

VTstcreate

Vtsymbol Functions VT Routines

Creates symbol table, no size specified.

SYMTABLE
VTstcreate (

char *table_name,
VTSTCOMPAREFUNPTR compare_function)

int
compare_function (

char *K1,
char *K2)

VTstcreate and VTstsizecreate create a new symbol table with the specified table_name. If a symbol table with that
name already exists, these routines return the address of that symbol table. Otherwise, they return the address of the
newly created symbol table. These routines associate a compare function with the table. This function is used to
order the keys in the table. It must work as follows: given two keys such as k1 and k2, it must return a negative
integer if k1 < k2, a zero if k1 = k2, and a positive integer if k1 > k2. If no compare function is specified, VTstcreate
and VTstsizecreate assume that the keys are pointers to character strings and use a default compare function that
compares the strings. This default compare function returns the result of comparing the strings lexicographically.
VTstsizecreate differs from VTstcreate in that the former lets the caller specify an initial size for the symbol table.
This saves memory allocations when you know that the symbol table is going to be large.

VTstdestroy

Vtsymbol Functions VT Routines

Destroys the symbol table and frees the memory required to store the symbol table.

void
VTstdestroy (

SYMTABLE stp)

VTstget

Vtsymbol Functions VT Routines

Returns the address of the symbol table with the specified name.

SYMTABLE
VTstget (

char *st_name)

VTstkeyfind

Vtsymbol Functions VT Routines

Returns address of specified key in symbol table.

SYMNODE
VTstkeyfind (

SYMTABLE stp,
char *searchkey)

VTstkeyfind returns the address of the symbol table node that has the specified key. Returns NULL if searchkey is not
associated with a node.

VTstlen

Vtsymbol Functions VT Routines

Returns the number of nodes in the specified symbol table.

int
VTstlen (

SYMTABLE stp)

VTstsizecreate

Vtsymbol Functions VT Routines

Creates symbol table, specifies size.

SYMTABLE
VTstsizecreate (

char *table_name,
VTSTCOMPAREFUNPTR compare_function,
int initial_size)

int
compare_function (

char *K1,
char *K2)

VTstsizecreate creates a symbol table, using a given initial size. See VTstcreate above.

VTstsnget

Vtsymbol Functions VT Routines

Returns address of indexed node.

SYMNODE
VTstsnget (

SYMTABLE stp,
int index)

VTstsnget returns the address of the index-th node in the specified symbol table. Note that, as in C, indexing is zero
based, which means the index of the first node is zero and the index of the last node is the symbol table length
(returned by VTstlen) minus one.

VTstsninsert

Vtsymbol Functions VT Routines

Inserts node in symbol table.

SYMNODE
VTstsninsert (

SYMTABLE stp,
char *newkey,
int *newvalue)

VTstsninsert inserts a node in a symbol table. Insertion works fastest if the nodes are added in order because this
routine performs a special check to see if the new item goes at the end of the list. The symbol table is sorted in
increasing order according to the associated compare function. With the default compare function, the table is sorted
in alphabetical order. This routine returns the address of the inserted node.

VTstsnremove

Vtsymbol Functions VT Routines

Removes the specified node from a symbol table.

void
VTstsnremove (

SYMTABLE stp,
SYMNODE snp)

VTsttraverse

Vtsymbol Functions VT Routines

Traverses symbol table, calls specified function.

void
VTsttraverse (

SYMTABLE stp,
VTSTTRAVERSEFUNPTR fcn,
ADDRESS args)

void
fcn (

char *key,
int *value,
ADDRESS args)

VTsttraverse traverses the symbol table, calling the specified function with the key and value from each node as well
as the args parameter.

VTstvalfind

Vtsymbol Functions VT Routines

Finds symbol table node with specified value.

SYMNODE
VTstvalfind (

SYMTABLE stp,
SYMNODE snp,
int *searchval)

VTstvalfind finds the next symbol table node that has the specified value. The routine expects a pointer to a symbol
table, a pointer to symbol node in that table, and a value. The routine starts searching at the next node in the symbol
table after the given node. If the node pointer is NULL, it starts at the beginning. Returns the address of the next
node with the specified value, or NULL if there is no such node.

VU Routines
Vu Routines

Utility routines.

VU Modules

All modules in the VU layer require the following #include files:
#include "std.h"
#include "dvstd.h"
#include "dvtools.h"
#include "VUfundecl.h"

Any special #include files required by a particular module are listed in the synopsis section for that module.

VUaxis Axis descriptor creation and drawing utilities.
VUcopyright Displays the DataViews copyright notice in the center of the

screen.
VUdebug Prints data structure utilities for VP/VG layer.
VUdevice Graphics device utility routines.
VUexit Closes all open devices and exits cleanly.
VUpixrep Routines to manage pixrep structures (px).
VUregistry Routines to query the Windows Registry.
VUsearchpath Utility routines.
VUstring Routines for managing strings.
VUstrlist Routines for managing lists of string pointers.
VUtextarray Low-level functions for manipulating hardware text
VUticlabel Axis tick mark labeling routine.
VUtraverse Data group function utilities.
VUvplist Routines for managing viewport lists.
VUwinevent Reports window events at a specified level of detail.

VUaxis
VUaxis Functions VU Routines

Axis descriptor creation and drawing utilities. These routines are currently intended for use only by programmers
writing their own display formatters. The axis descriptor, AXISDESC, is of type ADDRESS, and stores information
about graph axis labels.

An axis has many attributes including labels, tick marks, grid lines, color, and start and end values. Major tick values
are integer multiples of 1, 2, 5, or 10 ´ 10±n where n is called the base exponent. The number of divisions marked
by minor ticks between the major ticks can be 1, 2, 5, or 10. Grid lines, when displayed, occur at major ticks. The
axes are created, managed, and drawn using the routines below.

See Also
The flags are defined in the include file dvaxis.h. An example of VUaxis routines usage is found in the file axis.c in
the programs directory. GRbackcolor can be called to change the background color before drawing.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUaxis Functions
VUaxCreate Creates and returns an axis descriptor.
VUaxDestroy Destroys an axis descriptor, freeing its memory.
VUaxDraw Draws an axis according to the axis descriptor.
VUaxDrawRange Draws a portion of the axis.
VUaxGet Gets axis descriptor attribute fields.
VUaxSet Sets axis descriptor attribute fields.
VUaxSetupForDrawing Prepares the axis for drawing.

#include "dvaxis.h"

VUaxCreate

VUaxis Functions VU Routines

Creates and returns an axis descriptor.

AXISDESC
VUaxCreate (

double Start,
double End)

VUaxCreate creates an axis descriptor given a start value, Start, and an end value, End. Returns a pointer to the axis
descriptor.

VUaxDestroy

VUaxis Functions VU Routines

Destroys an axis descriptor, freeing the axis descriptor data structure memory, axis.

void
VUaxDestroy (

AXISDESC axis)

VUaxDraw

VUaxis Functions VU Routines

Draws an axis according to the axis descriptor.

void
VUaxDraw (

AXISDESC axis)

VUaxDraw draws the axis according to the flags defined by calling VUaxSet. Once the axis has been drawn, no
attribute can be changed except for the start value, which is used for handling wrap-around, and grid and axis colors.

VUaxDrawRange

VUaxis Functions VU Routines

Draws a portion of the axis.

void
VUaxDrawRange (

AXISDESC axis,
double StartValue
double EndValue)

VUaxDrawRange draws a portion of the axis. The portion drawn is determined by the given start and end values.

VUaxGet

VUaxis Functions VU Routines

Gets axis descriptor attribute fields.

void
VUaxGet (

AXISDESC axis,
int flag,
ADDRESS arg)

VUaxGet gets certain attributes of an axis descriptor. This routine must be preceded by a call to
VUaxSetupForDrawing, VUaxDraw, or VUaxDrawRange. The attribute field flags, defined in the include file
dvaxis.h, are listed below, together with the pointer to the data type, arg.

Flag arg Type Comment
AXIS_BOUNDS RECTANGLE * Rectangle containing offsets for ticks and labels to be added to axis

start and end points.
BASE_EXPONENT int * Base exponent (see above).
INITIAL_TICK_VALUE double * Value associated with first tick.
INITIAL_TICK_POINT DV_POINT * Position in screen coordinates of first tick.
MAJOR_PIXEL_GAP double * Actual screen distance between major ticks.
MAJOR_VALUE_GAP double * Actual value difference between major ticks.
MINOR_PIXEL_GAP double * Actual screen difference between minor ticks.
MINOR_VALUE_GAP double * Actual value difference between minor ticks.
MINOR_TICKS_PER_MAJOR int * Number of minor ticks per major tick (1, 2, 5, or 10).
TICK_LABEL_EXTENT DV_POINT * Size (in pixels) of largest tick label.

VUaxSet

VUaxis Functions VU Routines

Sets axis descriptor attribute fields.

void
VUaxSet (

AXISDESC axis,
int flag, <type> value,
int flag, <type> value,
...,

0)

VUaxSet sets the attributes of an axis descriptor. The attribute list must end in 0. The argument list begins with the
axis descriptor, which is followed by flag-value pairs. value must correspond to the type of flag used. The flags that
define the axis attribute fields are listed below. The flags are defined in the include file dvaxis.h. The first group of
flags are required by the VUaxis routines and must be set by the programmer. The second group of flags are
parameters that the programmer can change. The third group of flags lets the programmer bypass the routine’s
default settings to set tick spacing, values, and labels directly. Use care in modifying these flags since conflicts in
tick spacing, values, and labeling can occur.

Required Flags Value Type Comment
AXIS_LENGTH int Axis length in screen coordinates.
AXIS_START_POINT DV_POINT * Position in screen coordinates.

Optional Flags Value Type Comment
AXIS_COLOR int Color index of axis. Default: axis color, if specified; otherwise

current foreground color.
AXIS_DIRECTION int AXIS_UP, AXIS_DOWN, AXIS_LEFT, AXIS_RIGHT. Default:

AXIS_UP.
AXIS_IS_LOG int Use logarithmic scaling? (YES, NO). Default: NO.
AXIS_NEW_START_VALUE double Data value at start of axis. Used to redraw axis with a new start

value, typically higher. Use with HIGHEST_VALUE
(see below). No default.

DRAW_GRID int Display a grid? (YES, NO). Default: NO.
DRAW_LABELS int Label the ticks? (YES, NO). Default: YES.
DRAW_TICKS int Draw any ticks? (YES, NO). Default: YES.
DRAW_MINOR_TICKS int Draw minor ticks?

(YES, NO). Default: YES.
GRID_COLOR int Color index of grid lines. Default: current foreground color.
GRID_EXCLUDE_ENDS int Exclude grid lines for first and last ticks? (YES, NO). Default: NO.
GRID_LENGTH int Length of grid lines in screen coordinates. No default.
GRID_LINE_TYPE int Line type index of grid lines. Default: solid.
GRID_SIDE int Grid lines on LEFT_SIDE or RIGHT_SIDE with respect to axis

direction from the start point. Default: opposite of LABEL_SIDE, if
any; otherwise opposite of TICK_SIDE.

HIGHEST_VALUE double Highest label value for using AXIS_NEW_START_VALUE to redraw
repeatedly. Not effective if using LABEL_FUNCTION
(see below). No default.

INTEGER_AXIS int Make axis values integers; base exponent is ³ 0.
(YES, NO). Default: NO.

LABEL_SIDE int Tick labels on LEFT_SIDE or RIGHT_SIDE of axis line. Defaults to
values for TICK_SIDE (see below).

TICK_LENGTH int Length in screen coordinates of a major tick mark. Default: equal to
one character width.

TICK_SIDE int Ticks on LEFT_SIDE or RIGHT_SIDE of axis. Default: left for axis
up; right for axis right.

Advanced Optional Flags Value Type Comment
LABEL_DISTANCE int Distance in screen coordinates of tick labels from axis.
LABEL_TEXTSIZE int Character size index of tick labels (1 to 4).
LABEL_FORMAT_FUNCTIONADDRESS, Tick labeling function,

ADDRESS, argument block,
int argument size. (See VPdgticlabfcn and VPvdticlabfcn.)

MIN_MAJOR_PIXEL_GAP double Minimum screen distance between major ticks.
MIN_MAJOR_VALUE_GAP double Minimum value difference between major ticks. Do not use with

MIN_MAJOR_PIXEL_GAP.
MIN_MINOR_PIXEL_GAP double Minimum screen distance between minor ticks.
MIN_MINOR_VALUE_GAP double Minimum value difference between minor ticks. Do not use with

MIN_MINOR_PIXEL_GAP.

VUaxSetupForDrawing

VUaxis Functions VU Routines

Prepares the axis for drawing.

BOOLPARAM
VUaxSetupForDrawing (

AXISDESC axis)

VUaxSetupForDrawing prepares the axis descriptor for drawing by filling undefined fields with defaults,
positioning the tick marks, and determining tick values and labels. Normally called when information about the axis
descriptor is needed before drawing.

VUcopyright
VUcopyright Functions VU Routines

By default, the DataViews copyright notice is displayed on all newly created screens and remains visible until you
draw over the screen. The utilities described in this section let you change this behavior.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUcopyright Functions
VUcopyright Displays DataViews copyright notice.
VUoff_copyright Turns off display of DataViews copyright notice.
 VUon_copyright Turns on display of DataViews copyright notice.

VUcopyright

VUcopyright Functions VU Routines

Displays DataViews copyright notice.

void
VUcopyright (void)

VUcopyright displays the DataViews copyright notice in the center of the screen. On color systems, the copyright
logo should appear with yellow text on a blue background. If the background is red, your software may have been
incorrectly validated. If you have questions, call DataViews Customer Support.

This routine is called by VUopendev_set, and indirectly by TscOpenSet. You can override the DataViews copyright
notice with your own version if you don’t want DataViews’s notice to appear in your application. To do this, write
your own VUcopyright routine using the same syntax. Your routine can be just:

void VUcopyright() {}

The DataViews routines then call your function instead of the DV-Tools version.

VUoff_copyright

VUcopyright Functions VU Routines

Turns off display of DataViews copyright notice.

void
VUoff_copyright (void)

VUoff_copyright sets a flag that tells DataViews not to display the DataViews copyright notice when new windows
are opened.

VUon_copyright

VUcopyright Functions VU Routines

Turns on display of DataViews copyright notice.

void
VUon_copyright (void)

VUon_copyright sets a flag that tells DataViews to display the DataViews copyright notice when new windows are
opened.

VUdebug
VUdebug Functions VU Routines

Prints data structure utilities for VP/VG layer. On some systems, these routines can be called directly by the
debugger to they are not located in the library; instead, they occur as source modules in the tooldebug subdirectory
of the src directory. In the following descriptions, all references to “print” refer to printing to the standard output.

See Also
VOdebug

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUdebug Functions
VUdbgCcf Prints the context control flags in a data group.
VUdbgColor Prints the contents of the COLOR_SPEC data structure.
VUdbgCtt Prints the contents of the color threshold table.
VUdbgDgp Prints the contents of a data group.
VUdbgVdp Prints the contents of a variable descriptor.

VUdbgCcf

VUdebug Functions VU Routines

Prints the context control flags in a data group.

void
VUdbgCcf (

DATAGROUP *datagroup)

VUdbgCcf prints all the context control flags in a given data group, datagroup. See VPdgcontext for a description of
the flags.

VUdbgColor

VUdebug Functions VU Routines

Prints the contents of the COLOR_SPEC data structure pointed to by color.

void
VUdbgColor (

COLOR_SPEC *color)

VUdbgCtt

VUdebug Functions VU Routines

Prints the contents of the color threshold table, ct, containing size elements.

void
VUdbgCtt (

int size,
COLOR_THRESHOLD *ct)

VUdbgDgp

VUdebug Functions VU Routines

Prints the contents of a data group.

void
VUdbgDgp (

DATAGROUP *datagroup)

VUdbgVdp

VUdebug Functions VU Routines

Prints the contents of a variable descriptor.

void
VUdbgVdp (

VARDESC vdp)

VUdbgVdp prints the contents of a variable descriptor, vdp. Prints the variable’s type, name, size, range, and access
mode.

VUdevice
VUdevice Functions VU Routines

Graphics device utility routines.

See Also
VPdgdevice, VGdgdevice, GRopen, GRclose, GRrgbtoindex, GRindextorgb

Example
The following code fragment demonstrates opening a device, finding its physical device number, finding the index
in the color lookup table that best approximates white, displaying the corresponding color components, and closing
the device.

int logdevice, white_index;
int red, green, blue;

logdevice = VUopendevice ("CONSOLE");

printf ("Physical device number = %d\n", VUgetdevnum (logdevice));

/* Get the index in the color lookup table that corresponds to white. */
white_index = VUrgbtoindex (logdevice, 255, 255, 255);

VUindextorgb (logdevice, white_index,
&red, &green, &blue);

printf ("Components of white: ");
printf ("red = %d, green = %d, blue = %d.\n",

red, green, blue);

VUclosedevice (logdevice);

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel
VUdevice Functions
VUclosedevice Closes specified display device.
VUctBestColors Reduces a set of color tables to a single table.
VUctRGBtoIndex Finds the closest match to a color in a color table.
VUctSort Sorts the colors in a color table.
VUctTransform Makes a transformation between two color tables.
VUgetdevindex Returns logical device number for VP/VU routine use.
VUgetdevnum Returns physical device number for GR routine use.
VUindextorgb Sets RGB arguments to color lookup table values.
VUloadclut Loads color lookup table from file.
VUopendev_clut Opens device using a color lookup table.
VUopendev_set Opens the device using the specified color lookup table and attributes.
VUopendevice Opens specified display device.
VUrgbtoindex Returns display device index, given RGB format.

VUclosedevice

VUdevice Functions VU Routines

Closes specified display device.

void
VUclosedevice (

int logdevice)

VUclosedevice closes the device specified by logdevice. logdevice contains the logical device number, returned by
VUopendevice.

VUctBestColors

VUdevice Functions VU Routines

Reduces a set of color tables to a single table.

BOOLPARAM
VUctBestColors (

COLOR_TABLE **color_tables,
int new_size,
COLOR_TABLE *new_tablep)

VUctBestColors determines a set of colors that best matches all the colors in an array of color tables. color_tables is
a NULL-terminated array of pointers to color tables to be matched. new_size specifies the maximum number of
colors in the new color set and must be between 1 and 256. new_tablep is a pointer to the color table to contain the
new set of colors. Returns DV_SUCCESS or DV_FAILURE.

VUctRGBtoIndex

VUdevice Functions VU Routines

Finds the closest match to a color in a color table.

BOOLPARAM
VUctRGBtoIndex (

COLOR_TABLE *color_tablep,
int r,
int g,
int b,
int *indexp)

VUctRGBtoIndex determines the index of the “closest” match in the specified color table, color_tablep, to a color
specified using the RGB values, r, g, and b. indexp is a pointer to the location to store the index value. Returns
DV_SUCCESS or DV_FAILURE.

VUctSort

VUdevice Functions VU Routines

Sorts the colors in a color table.

void
VUctSort (

COLOR_TABLE *color_tablep)

VUctSort reorders the colors in a color table based on hue, lightness, and saturation. color_tablep is a pointer to the
color table. You can call this routine to sort the color table returned by VOpmGet.

VUctTransform

VUdevice Functions VU Routines

Makes a transformation between two color tables.

void
VUctTransform (

COLOR_TABLE *from_colors,
COLOR_TABLE *to_colors,
COLOR_XFORM *transform)

VUctTransform makes a color transform from the source color table, from_colors, to the target color table,
to_colors. Colors in the source color table are translated to the closest color in the target color table. Fills the empty
color transform structure, transform, with the mappings of the source color indices to the target color indices.

VUgetdevindex

VUdevice Functions VU Routines

Returns logical device number for VP/VU routine use.

int
VUgetdevindex (

int PhysicalDevice)

VUgetdevindex returns the logical device number when given the physical device number. The logical device
number is expected by the VP and VU routines.

VUgetdevnum

VUdevice Functions VU Routines

Returns physical device number for GR routine use.

int
VUgetdevnum (

int logdevice)

VUgetdevnum, given the logical device number (obtained by a previous call to VUopendevice), returns the physical
device number expected by the GR select routine.

VUindextorgb

VUdevice Functions VU Routines

Sets RGB arguments to color lookup table values.

void
VUindextorgb (

int logdevice
int color_index,
int *red,
int *green,
int *blue)

VUindextorgb, given a logical device number and a color lookup table index, sets the red, green, and blue arguments
to the values in the color lookup table corresponding to the index. RGB format specifies a color using three numbers
in the range [0,255], where each number corresponds to the intensity of one of the additive primary colors: red,
green, and blue.

VUloadclut

VUdevice Functions VU Routines

Loads color lookup table from file.

void
VUloadclut (

char *filename)

VUloadclut loads a color lookup table from a file. If the filename is NULL, loads the default table. The file must
have the following format:

One line for each entry in the table. These lines should comprise triplets, giving the red, green, and blue
components of that entry in the table.

Each component must be in the range [0,255]. If the first component in the line is a negative number, that entry
in the table remains unchanged. For example, to change the first and last entries for a device with four
planes to black and white, use the following table:

0 0 0
-1
-1
255 255 255

If the table has more entries than the device can handle, the extra ones are ignored. If the table has fewer entries,
the ones not specified are not changed. Most devices have no more than 256 colors. Extra characters after
the numbers are ignored, so you can add comments.

This routine must be called after VUopendevice.

VUopendev_clut

VUdevice Functions VU Routines

Opens device using a color lookup table.

int
VUopendev_clut (

char *name,
char *clutfile)

VUopendev_clut opens the display device and sets the color lookup table to the values defined in the file, clutfile.
This file contains a list of red, green, and blue triplets, with one line per color index.

VUopendev_set

VUdevice Functions VU Routines

Opens the device using the specified color lookup table and attributes.

int
VUopendev_set (

char *dev_name,
char *clutfile,

ULONG flag, <type> value,
ULONG flag, <type> value,
...,

V_END_OF_LIST)

VUopendev_set opens the device, dev_name, specifies the color lookup table, clutfile, sets device attributes, and
returns the number representing that device. The device’s attributes are set using a variable length argument list of
attribute/value pairs. Each pair of parameters starts with an attribute flag that specifies the device attribute to be set.
The second argument sets the value of the attribute. The list must terminate with V_END_OF_LIST or 0.

Examples of attributes are window width and height, window icon, and for externally created windows, the window
id. Attributes are specified as integer constant flags. For a list of the flags and their attributes, see the description of
TscOpenSet. These flags, defined in the header file dvGR.h, are also used by GRget, GRopen_set, GRset,
TscOpenSet, and VOscOpenClutSet

In the following example, a window with the dimensions 800x600 pixels is opened on an X11 window system:
device = VUopendev_set ("X", NULL, V_WINDOW_WIDTH, 800, V_WINDOW_HEIGHT, 600,

V_END_OF_LIST);

Not all attribute flags work on all DataViews drivers. These attributes are device-dependent and can not be set on all
devices.

VUopendevice

VUdevice Functions VU Routines

Opens specified display device.

int
VUopendevice (

char *name)

VUopendevice opens a graphic display device for input/output. Returns a logical device number used when referring
to the device. VPdgdevice expects this logical device number rather than the physical device number obtained using
GRopen. name is a character string containing the name of the device. Note that it does not matter if you reopen a
device that is already open, so this routine can be used to find the logical device number associated with an open
device.

VUrgbtoindex

VUdevice Functions VU Routines

Returns display device index, given RGB format.

int
VUrgbtoindex (

int logdevice,
int red,
int green,
int blue)

VUrgbtoindex, given a logical device number and an RGB color specification, returns the index of the device’s color
lookup table closest to the specified color. RGB format specifies a color using three numbers in the range [0,255],
where each number corresponds to the intensity of one of the additive primary colors: red, green, and blue.

VUexit
VUexit Functions VU Routines

Closes all open devices and exits cleanly.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUexit Functions
VUexit Closes all open devices and exits cleanly.

VUexit

VUexit Functions VU Routines

Closes all open devices and exits cleanly.

void
VUexit (

int status)

VUexit exits cleanly, closing all open display devices and calling exit(status). This is useful because calling exit() on
some systems causes an exit but does not necessarily close open display devices.

VUpixrep
VUpixrep Functions VU Routines

Routines to manage pixrep structures (px). A pixrep is an abstract representation of pixel-based graphic data. The
pixrep format is flexible enough to be a superset of many raster or pixel formats. It lets you handle diverse image
formats in a single structure, which can then be used by pixmaps and the GR layer raster modules.

These routines and macros are useful for fast image input/output, image processing, directly accessing pixel data,
and reading unsupported formats into the pixrep structure. The pixrep structure can then be used to create pixmaps.

The assumed pixel arrangement is a rectangular array; however, the layout of the pixels in the array and the
interpretation of pixel values are flexible. The layout of pixreps is explained in the General Description later in this
module.

A set of macros is also provided for reading the pixels in a pixrep regardless of its layout and the interpretation of its
pixel values.

The layout of the pixel data array is controlled by certain fields in the pixrep structure. This section describes the
allowable variations in the layout and the fields that control them.

Pixel values may be either indirect color or direct color. Indirect color pixel values are indices into a color table;
direct color pixel values store actual RGB component values. If a pixrep points to a color table, the pixel values
must be indirect color. Since a color table has no more than 256 entries, the color depth of the pixrep cannot exceed
8. A pixrep can contain a pointer to a boolean vector (of length 256), color_used, indicating which colors in the color
table are actually used by the pixrep. Setting this field can speed up some pixrep operations such as converting
pixreps to rasters.

If the color table pointer field is NULL, the pixel values must be direct color. In this case there is one mask for each
color component indicating where the color value is stored in the pixel. Components can be located anywhere in the
pixel, but each component must occupy consecutive bits in the pixel. For example, in a typical 24-bit color system,
each pixel is 32 bits long. The most significant byte is unused. The next byte contains red intensity, the third byte
contains the green, and the last byte contains the blue. A pixrep also stores the location of the right-most “1” bit of
each mask to speed up pixel reading.

The pixrep structure contains fields giving the height and width of the data. The pixels are arranged in rows from left
to right. The data can be arranged with the bottom row of the picture first in the pixel array (the standard DataViews
row order) or with the top row first (the order used by X). Each pixel in the row takes up a certain number of bits.
This number can be 1, 2, 4, 8, 16, or 32. If the color depth is less than the number of bits per pixel, the color data is
stored in the least significant part of those bits. For example, if the pixrep has a depth of 1 but a byte is used for each
pixel, the low-order bit of the byte contains the pixel value. An exception is direct-color pixreps, which store the
colors directly in the pixrep as red, green, and blue intensities. The location of each value is determined by the
masks.

Rows can be aligned on 8-, 16-, or 32-bit boundaries. If they are aligned on 8-bit boundaries, they are consecutive in
memory. If they are aligned on 16-bit boundaries, each row starts on the next even address after the last byte of the
previous row. A similar rule applies to 32-bit boundaries.

If pixels are less than 8 bits each, the data is packed into an 8-, 16-, or 32-bit unit, the pack_unit. For example, if
there are 2 bits per pixel, 4 pixels are stored in each byte. Within the bytes of a unit, the pixel values can be stored in
order from most-significant to least-significant bit, or vice versa. If MSB order is used, bits 7-6 contain the left-most
pixel of the 5 pixels, 5-4 contain the next, 3-2 contain the third and 1-0 contain the right-most. Unused bits at the end
of a row may have any value. If the pack_unit is 8, the unit packing order is irrelevant.

If pixels are more than 8 bits each, the byte order in each pixel is the native order.

In the macros, you can declare pixptr as FAST for more efficient reading and writing. The macros use a pointer to a
pixel in the pixscan. VUpxScanInit initializes the pixscan pointer. This routine must be called before using the
reading and writing macros. The pixscan contains the information necessary for reading a pixrep as a consecutive
stream of pixel values. The next pixel in the stream is defined to be the next pixel to the right; however, macros are
provided to read and write in other directions as well.

The fields that control the pixrep structure are:

Field Name Type Description
width, height int Width and height of the pixrep in pixels.
depth UBYTE Number of bits of color information.
bits_per_pixel UBYTE 1, 2, 4, 8, 16, or 32 bits.
row_alignment UBYTE If row_alignment is 8, rows are byte-aligned; if 16, rows are short-aligned; if 32,

rows are long-aligned.
origin_at_ll DV_BOOL YES if origin is in lower left. Otherwise, NO.
pack_unit UBYTE If fewer than 8 bits per pixel, packing unit. The packing unit is the 8, 16, or 32

bit unit into which the data is packed.
pack_msf_in_byte DV_BOOL If fewer than 8 bits per pixel, the order of pixels in the byte.
pack_msf_in_unit DV_BOOL If fewer than 8 bits per pixel, the order of bytes in the unit.
pixels_length LONG Length of the pixel array.
pixels UBYTE * The array of pixels.
pclut COLOR_TABLE * If (pclut != NULL), pixels are indexed into color table.
color_used DV_BOOL * An array of type DV_BOOL. Specifies which colors are used by the pixrep. If

color_used[i] is TRUE, the corresponding color in the color table is used in
the pixrep. If FALSE, the color isn’t used. If color_used is NULL, assumes
all colors are used. This field is optional, but can speed up some operations
if used.

red_mask ULONG Information for finding the red component
red_shift int of the pixel.
grn_mask ULONG Information for finding the green
grn_shift int component of the pixel.
blu_mask ULONG Information for finding the blue
blu_shift int component of the pixel.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel
VUpixrep Functions
VUpxBytesPerRow Gets the number of bytes per row of a pixrep.
VUpxCalcMaskInfo Gets the color shift amount from the color mask.
VUpxChannelMerge Merges three pixreps; each provides a primary color.
VUpxClip Clips a pixrep.
VUpxCopy Makes a copy of a pixrep.
VUpxDefault Fills in the pixrep with default values.
VUpxFlip Flips a pixrep.
VUpxFree Frees storage used by a pixrep.
VUpxGetPixel Reads a pixel from a pixrep.
VUpxMerge Merges two pixreps.
VUpxNewColorTable Copies a pixrep using a different color table.
VUpxResize Resizes a pixrep.
VUpxRotate Rotates a pixrep.
VUpxRowCompatible Determines if rows can be copied from one pixrep to another.
VUpxScanInit Initializes a pixscan pointer for fast reading and writing.
VUpxSetPixel Writes a pixel value into a pixrep.
VUpxTransform Transforms a pixrep from one layout to another.
VUpxValid Determines if the data at an address is a valid pixrep.

VUpixrep Macros
#include "VUpixrep.h"

2

GETBLUPXRP Gets the blue component from a direct-color pixel value.
GETGRNPXRP Gets the green component from a direct-color pixel value.
GETREDPXRP Gets the red component from a direct-color pixel value.
ISPIXSTD Determines if the pixel value is in standard DataViews format.
PIXPXRP Creates a pixel value from RGB components.
PIXSCALE Scales a component to a different range.
PIXSTD Creates a standard pixel value from RGB components.
PUTBLUPXRP Puts the blue component into a direct-color pixel value.
PUTGRNPXRP Puts the green component into a direct-color pixel value.
PUTREDPXRP Puts the red component into a direct-color pixel value.
PXSCANPOINT Specifies the next pixel to be read.
PXSCANREAD Reads the current pixel and advances the pixscan pointer.
PXSCANREADD Reads in decreasing row and increasing column order.
PXSCANREADL Reads in increasing column and increasing row order.
PXSCANREADR Reads in decreasing column and increasing row order.
PXSCANREADU Reads in increasing row and increasing column order.
PXSCANWRITE Writes to the current pixel and advances the pixscan pointer.
PXSCANWRITED Writes in decreasing row and increasing column order.
PXSCANWRITEL Writes in increasing column and increasing row order.
PXSCANWRITER Writes in decreasing column and increasing row order.
PXSCANWRITEU Writes in increasing row and increasing column order.

VUpxBytesPerRow

VUpixrep Functions VU Routines

Gets the number of bytes per row of a pixrep.

int
VUpxBytesPerRow (

PIXREP *pixrep)

VUpxBytesPerRow returns the number of bytes per row of a pixrep. pixrep is a pointer to the pixrep.

VUpxCalcMaskInfo

VUpixrep Functions VU Routines

Gets the color shift amount from the color mask.

void
VUpxCalcMaskInfo (

ULONG mask,
int *shift,
int *size)

VUpxCalcMaskInfo determines how much a color component must be shifted to be in the correct location based on
the mask. mask is a user-supplied mask for one of the color components. The amount of shift required is saved to
shift. This routine also determines the number of bits in the component and saves this value to size.

VUpxChannelMerge

VUpixrep Functions VU Routines

Merges three pixreps, where each provides a primary color.

BOOLPARAM
VUpxChannelMerge (

PIXREP *dest_pixrep,
PIXREP *red_pixrep,
PIXREP *green_pixrep,
PIXREP *blue_pixrep)

VUpxChannelMerge combines the color information from three pixreps into a single target pixrep, dest_pixrep.
red_pixrep is a pointer to the pixrep providing red information, green_pixrep provides green information, and
blue_pixrep provides blue information. This function is useful for combining raw sensor data into a false-color
representation. This routine only modifies the pixels in dest_pixrep; it does not allocate it or change its layout.

VUpxClip

VUpixrep Functions VU Routines

Clips a pixrep.

BOOLPARAM
VUpxClip (

PIXREP *dest_pixrep,
PIXREP *source_pixrep,
RECTANGLE *bounds)

VUpxClip copies a source pixrep to the target pixrep. bounds indicates the portion to copy. This routine reallocates
storage for dest_pixrep, discarding unused pixels. If the rectangle is 10x20, the size of the copy is 10x20. This
routine allocates storage for dest_pixrep. If successful, returns YES. Otherwise returns NO.

VUpxCopy

VUpixrep Functions VU Routines

Makes a copy of a pixrep.

void
VUpxCopy (

PIXREP *dest_pixrep,
PIXREP *source_pixrep)

VUpxCopy makes a deep copy of the pixrep structure source_pixrep to a new pixrep structure dest_pixrep. This
routine allocates the storage for dest_pixrep.

VUpxDefault

VUpixrep Functions VU Routines

Fills in the pixrep with default values.

void
VUpxDefault (

PIXREP *pixrep,
int h,
int w,
COLOR_TABLE *color_table,
ULONG red_mask,
ULONG green_mask,
ULONG blue_mask)

VUpxDefault initializes a pixrep, pixrep, with reasonable default values. The parameters h and w specify the height
and width of the new pixrep. color_table is a pointer to the color table for the new pixrep. If color_table is NULL,
use red_mask, green_mask, and blue_mask to specify the color.

This routine does all initialization except allocation for the pixel storage. This routine sets the pixels_length field. If
you change a field that could affect the row length, such as bits_per_pixel or row_alignment, you must recalculate
the pixel length using the formula:

pixels_length = height*VUpxBytesPerRow (pixrep)

VUpxFlip

VUpixrep Functions VU Routines

Flips a pixrep.

BOOLPARAM
VUpxFlip (

PIXREP *dest_pixrep,
PIXREP *source_pixrep,
V_PX_FLIP_ENUM axis)

VUpxFlip copies the source pixrep, source_pixrep, to the target pixrep, dest_pixrep, flipping the pixrep around the
horizontal or vertical axis. If axis is V_PX_HORIZONTAL, flips the pixrep along the horizontal axis; if axis is
V_PX_VERTICAL, flips the pixrep along the vertical axis. The flipped pixrep is saved to the target pixrep
dest_pixrep. This routine allocates storage for dest_pixrep. Returns YES if successful. Otherwise returns NO.

VUpxFree

VUpixrep Functions VU Routines

Frees storage used by a pixrep.

void
VUpxFree (

PIXREP *pixrep)

VUpxFree frees the storage allocated for a pixrep. pixrep is a pointer to the pixrep.

VUpxGetPixel

VUpixrep Functions VU Routines

Reads a pixel from a pixrep.

ULONG
VUpxGetPixel (

PIXREP *pixrep,
int x,
int y)

VUpxGetPixel returns the value of a pixel in the pixrep. x and y specify the coordinates of the pixel to read.

VUpxMerge

VUpixrep Functions VU Routines

Merges two pixreps.

BOOLPARAM
VUpxMerge (

PIXREP *source_pixrep,
RECTANGLE *bounds,
PIXREP *dest_pixrep,
DV_POINT *ll,
V_PX_MERGEMODE_ENUM mode,
PIXREP *mask,
COLOR_XFORM *mask_transform)

VUpxMerge modifies an existing pixrep, dest_pixrep, by merging data from the source pixrep, source_pixrep, into it.
bounds is the portion from the source pixrep to merge. ll indicates where to place the lower left corner of the source
portion within the destination pixmap. mode indicates the method for merging the source and target. Valid flags for
mode are:

V_PX_COPY Replace the target pixel with the source
pixel.

V_PX_AND Bit-wise AND the target and source pixels.
V_PX_OR Bit-wise OR the target and source pixels.
V_PX_XOR Bit-wise XOR the target and source pixels.

The pixreps must either both be direct color or both be indirect color. The AND, OR, and XOR modes combine the
color of a source pixel with the color of the corresponding pixel in the target pixrep.

For good results using indirect color, you must set up the color table of the target pixrep specifically for the merge
mode. For information on setting up the color table, see the Plane Masking technical note. The merged pixrep uses
the color table of the target pixrep; if the target and source pixrep have different color tables, the results may not be
what you expect.

The pixreps must be using indirect color to use a mask. If mask is specified, only the pixels in the target pixrep
whose corresponding pixels in mask have an index greater than 0 are actually merged with the source pixels. All
others are unchanged. mask_transform specifies a color transform that changes the interpretation of mask. When
mask is the target or source pixrep, you can only use mask_transform to merge certain colors in either the source or
target. If mask_transform is NULL, the mask is used directly.

The mask and target pixreps should have the same dimensions. They should both have indirect color using the same
color tables, or both have direct color using the same color masks.

This routine only modifies the pixels in dest_pixrep; it does not allocate it or change its layout. Returns YES if
successful. Otherwise returns NO.

VUpxNewColorTable

VUpixrep Functions VU Routines

Copies a pixrep using a different color table.

BOOLPARAM
VUpxNewColorTable (

PIXREP *dest_pixrep,
PIXREP *source_pixrep,
COLOR_TABLE *color_table,
BOOLPARAM do_dither)

VUpxNewColorTable copies the source pixrep to the target pixrep, dest_pixrep, replacing the color table of the
source pixrep with a new color table. The color_table parameter is a pointer to the new color table. If a color in
source_pixrep does not have an exact match in the new color table, the closest match is used. If do_dither is TRUE,
a Floyd-Steinberg dither is applied when matching colors. This routine allocates storage for dest_pixrep. Returns
YES if successful. Otherwise returns NO.

VUpxResize

VUpixrep Functions VU Routines

Resizes a pixrep.

BOOLPARAM
VUpxResize (

PIXREP *dest_pixrep,
PIXREP *source_pixrep,
int new_h,
int new_w)

VUpxResize copies and resizes the source pixrep to the target pixrep, dest_pixrep. The pixrep is resized to the new
height and width, new_h and new_w. If either new_h or new_w is negative, the corresponding dimension is not
changed. This routine allocates storage for dest_pixrep. Returns YES if successful. Otherwise returns NO.

VUpxRotate

VUpixrep Functions VU Routines

Rotates a pixrep.

BOOLPARAM
VUpxRotate (

PIXREP *dest_pixrep,
PIXREP *source_pixrep,
int amount)

VUpxRotate copies and rotates the source pixrep to the target pixrep, dest_pixrep. amount specifies the degree of
rotation. Rotation is clockwise and rounded down to the nearest multiple of 90 degrees. This routine allocates
storage for dest_pixrep. Returns YES if successful. Otherwise returns NO.

VUpxRowCompatible

VUpixrep Functions VU Routines

Determines if rows can be copied from one pixrep to another.

BOOLPARAM
VUpxRowCompatible (

PIXREP *pixrep1,
PIXREP *pixrep2)

VUpxRowCompatible determines whether the formats of pixreps pixrep1 and pixrep2 are similar enough for a row
of one pixrep to be copied directly into a row of the other pixrep using C routines such as memcpy(). If so, returns
YES. Otherwise, returns NO.

VUpxScanInit

VUpixrep Functions VU Routines

Initializes a pixscan pointer for fast reading and writing.

void
VUpxScanInit (

PIXREP *pixrep,
PIXSCAN *pixscan,
PIXPTR *pixptr,
BOOLPARAM origin_at_ll)

VUpxScanInit initializes a pixscan structure based on a pixrep, pixrep. pixscan is a pointer to the pixscan being
initialized; pixptr is the byte pointer being initialized. The pixscan can then be used by the macros for reading and
writing the stream. If origin_at_ll is TRUE, the pixels in the pixscan are indexed in DataViews order, with the
bottom row as row 0. If origin_at_ll is FALSE, the pixscan is indexed with the top row as row 0. The pixscan is
initialized to point to pixel (0,0). The pixscan must be initialized before using the reading and writing macros.

VUpxSetPixel

VUpixrep Functions VU Routines

Writes a pixel value into a pixrep.

void
VUpxSetPixel (

PIXREP *pixrep,
int x,
int y,
ULONG pixval)

VUpxSetPixel writes a pixel value into the pixrep, pixrep. pixval specifies the pixel value to write. x and y specify
the target location in the pixrep.

VUpxTransform

VUpixrep Functions VU Routines

Transforms a pixrep from one layout to another.

BOOLPARAM
VUpxTransform (

PIXREP *dest_pixrep,
PIXREP *source_pixrep,
RECTANGLE *bounds,
COLOR_XFORM *color_transform)

VUpxTransform transforms the data from the source pixrep to match the format specified by the target pixrep,
dest_pixrep. The target pixrep must be properly initialized and pixel data allocated. This routine only modifies the
pixels in dest_pixrep; it does not allocate it or change its layout. This routine is used primarily to create a copy of a
pixrep with new row attributes.

If the target pixrep and the source pixrep are different sizes, the source data is resized to fit the target. If the bounds
rectangle is supplied, only the part of the source pixrep within these boundaries is copied to the target.

The source and target pixreps may have different row attributes, but they should be either both direct or both indirect
color. If both the source and target pixreps use indirect color, you can use color_transform to indicate how to map
colors from one pixrep to the other. The contents of the pixels are otherwise unchanged. The bits_per_pixel field of
the target should be greater than or equal to that of the source.

VUpxValid

VUpixrep Functions VU Routines

Determines whether the data at an address is a valid pixrep.

BOOLPARAM
VUpxValid (

ADDRESS address)

VUpxValid determines whether or not the data at address is a valid pixrep. Return YES if valid; otherwise returns
NO.

GETBLUPXRP

VUpixrep Functions VU Routines

Gets the blue component from a direct-color pixel value.

ULONG
GETBLUPXRP (

ULONG pixel,
PIXREP pixrep)

GETBLUPXRP gets the blue component from a direct-color pixel value, pixel. The parameter pixrep specifies the
pixrep containing the pixel. Returns the blue component of the pixel value.

GETGRNPXRP

VUpixrep Functions VU Routines

Gets the green component from a direct-color pixel value.

ULONG
GETGRNPXRP (

ULONG pixel,
PIXREP pixrep)

GETGRNPXRP gets the green component from a direct-color pixel value, pixel. The parameter pixrep specifies the
pixrep containing the pixel. Returns the green component of the pixel value.

GETREDPXRP

VUpixrep Functions VU Routines

Gets the red component from a direct-color pixel value.

ULONG
GETREDPXRP (

ULONG pixel,
PIXREP pixrep)

GETREDPXRP gets the red component from a direct-color pixel value, pixel. The parameter pixrep specifies the
pixrep containing the pixel. Returns the red component of the pixel value.

ISPIXSTD

VUpixrep Functions VU Routines

Determines if the pixel value is in standard DataViews format.

BOOLPARAM
ISPIXSTD (

ULONG pixel)

ISPIXSTD determines if the pixel value is in standard DataViews format. Returns YES if the pixel is in standard
DataViews format. Otherwise, returns NO.

PIXPXRP

VUpixrep Functions VU Routines

Creates a pixel value from RGB components.

ULONG
PIXPXRP (

ULONG r,
ULONG g,
ULONG b,
PIXREP pixrep)

PIXPXRP creates a pixel value from RGB components, r, g, and b. This macro uses the color mask from the pixrep.
Returns the combined pixel value.

PIXSCALE

VUpixrep Functions VU Routines

Scales a component to a different range.

ULONG
PIXSCALE (

ULONG pixel,
int bs,
int bt)

PIXSCALE scales the color intensity to depth bt given the depth bs. Returns the new color intensity depth.

PIXSTD

VUpixrep Functions VU Routines

Creates a standard pixel value from RGB components.

ULONG
PIXSTD (

ULONG r,
ULONG g,
ULONG b)

PIXSTD creates a standard pixel value from RGB components, r, g, and b. Returns the combined pixel value.

PUTBLUPXRP

VUpixrep Functions VU Routines

Puts the blue component into a direct-color pixel value.

void
PUTBLUPXRP (

ULONG pixel,
ULONG b,
PIXREP pixrep)

PUTBLUPXRP puts the blue component specified by b into a direct-color pixel value, pixel, in the pixrep.

PUTGRNPXRP

VUpixrep Functions VU Routines

Puts the green component into a direct-color pixel value.

void
PUTGRNPXRP (

ULONG pixel,
ULONG g,
PIXREP pixrep)

PUTGRNPXRP puts the green component specified by g into a direct-color pixel value, pixel, in the pixrep.

PUTREDPXRP

VUpixrep Functions VU Routines

Puts the red component into a direct-color pixel value.

void
PUTREDPXRP (

ULONG pixel,
ULONG r,
PIXREP pixrep)

PUTREDPXRP puts the red component specified by r into a direct-color pixel value, pixel, in the pixrep.

PXSCANPOINT

VUpixrep Functions VU Routines

Specifies the next pixel to be read.

void
PXSCANPOINT (

PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr,
int x,
int y)

PXSCANPOINT sets the pixscan pointer so the next pixel to be read or written is the pixel specified by x and y.

PXSCANREAD

VUpixrep Functions VU Routines

Reads the current pixel and advances the pixscan pointer.

void
PXSCANREAD (

ULONG dest_pixel,
PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr)

PXSCANREAD reads the next pixel from the pixscan pointer and puts the value in dest_pixel. Advances pixscan to
the next pixel. The next pixel is the one to the right, or if at the end of a row, the first pixel in the next row with a
higher number (up if in standard DataViews row order).

PXSCANREADD

VUpixrep Functions VU Routines

Reads in decreasing row and increasing column order.

void
PXSCANREADD (

ULONG dest_pixel,
PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr)

PXSCANREADD reads in decreasing row and increasing column order. Reads the next pixel from the pixscan
pointer and puts the value in dest_pixel. Advances pixscan to the next pixel. The next pixel is the next one in the
column with a lower number (down if in standard DataViews row order), or if at the end of a column, the first pixel
in the next column to the right.

PXSCANREADL

VUpixrep Functions VU Routines

Reads in increasing column and increasing row order.

void
PXSCANREADL (

ULONG dest_pixel,
PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr)

PXSCANREADL reads in increasing column and increasing row order. Reads the next pixel from the pixscan pointer
and puts the value in dest_pixel. Advances pixscan to the next pixel. The next pixel is the one to the right, or if at the
end of a row, the first pixel in the next row with a higher number (up if in standard DataViews row order). This
macro is the same as PXSCANREAD.

PXSCANREADR

VUpixrep Functions VU Routines

Reads in decreasing column and increasing row order.

void
PXSCANREADR (

ULONG dest_pixel,
PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr)

PXSCANREADR reads in decreasing column and increasing row order. Reads the next pixel from the pixscan
pointer and puts the value in dest_pixel. Advances pixscan to the next pixel. The next pixel is the one to the left, or if
at the end of a row, the first pixel in the next row with a higher number (up if in standard DataViews row order).

PXSCANREADU

VUpixrep Functions VU Routines

Reads in increasing row and increasing column order.

void
PXSCANREADU (

ULONG dest_pixel,
PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr)

PXSCANREADU reads in increasing row and increasing column order. Reads the next pixel from the pixscan pointer
and puts the value in dest_pixel. Advances pixscan to the next pixel. The next pixel is the next one in the column
with a higher number (up if in standard DataViews row order), or if at the end of a column, the first pixel in the next
column to the right.

PXSCANWRITE

VUpixrep Functions VU Routines

Writes to the current pixel and advances the pixscan pointer.

void
PXSCANWRITE (

PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr,
ULONG source_pixel)

PXSCANWRITE writes the pixel value specified by source_pixel to the next pixel from the pixscan pointer.
Advances pixscan to the next pixel. The next pixel is the one to the right, or if at the end of a row, the first pixel in
the next row with a higher number (up if in standard DataViews row order). The parameter pixrep specifies the
pixrep containing the pixel.

PXSCANWRITED

VUpixrep Functions VU Routines

Writes in decreasing row and increasing column order.

void
PXSCANWRITED (

PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr,
ULONG source_pixel)

PXSCANWRITED writes in decreasing row and increasing column order. Writes the pixel value specified by
source_pixel to next pixel from the pixscan pointer. Advances pixscan to the next pixel. The next pixel is the next
one in the column with a lower number (down if in standard DataViews row order), or if at the end of a column, the
first pixel in the next column to the right. The parameter pixrep specifies the pixrep containing the pixel.

PXSCANWRITEL

VUpixrep Functions VU Routines

Writes in increasing column and increasing row order.

void
PXSCANWRITEL (

PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr,
ULONG source_pixel)

PXSCANWRITEL writes in increasing column and increasing row order. Writes the pixel value specified by
source_pixel to next pixel from the pixscan pointer. Advances pixscan to the next pixel. The next pixel is the one to
the right, or if at the end of a row, the first pixel in the next row with a higher number (up if in standard DataViews
row order). The parameter pixrep specifies the pixrep containing the pixel.

PXSCANWRITER

VUpixrep Functions VU Routines

Writes in decreasing column and increasing row order.

void
PXSCANWRITER (

PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr,
ULONG source_pixel)

PXSCANWRITER writes in decreasing column and increasing row order. Writes the pixel value specified by
source_pixel to next pixel from the pixscan pointer. Advances pixscan to the next pixel. The next pixel is the one to
the left, or if at the end of a row, the first pixel in the next row with a higher number (up if in standard DataViews
row order). The parameter pixrep specifies the pixrep containing the pixel.

PXSCANWRITEU

VUpixrep Functions VU Routines

Writes in increasing row and increasing column order.

void
PXSCANWRITEU (

PIXREP pixrep,
PIXSCAN pixscan,
PIXPTR pixptr,
ULONG source_pixel)

PXSCANWRITEU writes in increasing row and increasing column order. Writes the pixel value specified by
source_pixel to next pixel from the pixscan pointer. Advances pixscan to the next pixel. The next pixel is the next
one in the column with a higher number (up if in standard DataViews row order), or if at the end of a column, the
first pixel in the next column to the right. The parameter pixrep specifies the pixrep containing the pixel.

VUregistry
VUregistry Functions VU Routines

Routines to query the Windows Registry.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUregistry Functions
VURegQueryDVHome Finds and returns a string representing the DataViews Home directory.
VURegQueryVal Searches the Windows registry for a value.

VURegQueryDvHome

VUregistry Functions VU Routines

Finds and returns a string representing the DataViews Home directory.

long
VURegQueryDvHome (

LPSTR* lpDvHome)

This function searches the Windows registry for the DataViews Home directory. If successful, it assigns a buffer
containing the directory information to lpDvHome.

Note: It is up to the user to free the memory allocated for the buffer.

Returns ERROR_SUCCESS if the DataViews home directory was found or an error value if it failed. The return
values are the same as the Win32 function RegQueryValueEx(). See your Microsoft Devloper Studio On-line
Documentation for more information about the return values.

VURegQueryVal

VUregistry Functions VU Routines

Searches the Windows registry for a value.

long
VURegQueryVal (

LPCTSTR lpSubkey,
LPCTSTR lpValueName,
LPBYTE lpData,
LPDWORD lpSize,
LPDWORD lpType)

This routine searches the Windows registry for the subkey, lpSubkey and returns the value, lpValueName, in the
buffer, lpData. It calls the win32 function RegQueryValueEx() opening first HKEY_CURRENT_USER then
HKEY_LOCAL_MACHINE during its search. The search stops if the subkey is found in
HKEY_CURRENT_USER.

If you set lpSize and the returned data is larger than this size, the function returns ERROR_MORE_DATA and
changes lpSize to the correct size for the returned data. If lpSize is null, the data is returned successfully and lpSize is
set to the size of the data.

lpType is either the address of a DWORD containing the data type returned, or NULL if you do not care about the
type information. The data types are the same as those returned for RegQueryValueEx(). See the Microsoft
Developer Studio On-line Documentation for more information.

If the key is found, the function returns ERROR_SUCCESS, otherwise it returns an error value.

You use this routine the same way you would use RegQueryValueEx(). If you do not know the size or type of the
data that will be returned, set lpData to NULL before calling this function. If the key lpSubkey is found, lpSize and
lpType are set to the size and type of the key's value. Knowing this information, you allocate an appropriately sized
buffer for lpData, then call this routine again with lpData pointing to that buffer and lpSize set to the size returned in
the first call. Be sure to make the successive calls to this function quickly to avoid the key changing out from under
you.

VUsearchpath
VUsearchpath Functions VU Routines

Utility routines.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUsearchpath Functions
VUaddSearchPath Adds a new path to the search path.
VUgetSearchPath Gets the search path.
VUsetSearchPath Sets the search path to the specified string.

VUaddSearchPath

VUsearchpath Functions VU Routines

Adds a new path to the search path.

BOOLPARAM
VUaddSearchPath (

char *Path,
BOOLPARAM Append)

VUaddSearchPath adds a new pathname, Path, to the search path. If Append is YES, Path is added to the end of the
search path, if NO, Path is added at the beginning. Returns DV_SUCCESS or DV_FAILURE.

VUgetSearchPath

VUsearchpath Functions VU Routines

Gets the search path.

BOOLPARAM
VUgetSearchPath (

char **SearchPath)

VUgetSearchPath gets the search path. SearchPath is a pointer to an internal data structure that should not be
modified. Returns DV_SUCCESS or DV_FAILURE.

VUsetSearchPath

VUsearchpath Functions VU Routines

Sets the search path to the specified string.

BOOLPARAM
VUsetSearchPath (

char *SearchPath)

VUsetSearchPath sets the search path to the specified string. Returns DV_SUCCESS or DV_FAILURE.

VUstring
VUstring Functions VU Routines

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUstring Functions
VUstrClone Creates a copy of a string.

VUstrClone

VUstring Functions VU Routines

Creates a copy of a string.

char *
VUstrClone (

char *string)

VUstrClone allocates space for and copies string and returns a pointer to the copy. If there is no input string, returns
NULL.

VUstrlist
VUstrlist Functions VU Routines

Module for managing lists of string pointers. Two common parameters for these routines are:

sl_row The position of the string pointer within the string list. It must be greater
than zero and less than or equal to the length of the string list.

sl_col The position of a character within a string. It must be less than or equal
to the length of the string.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUstrlist Functions
VUslAddString Adds a string to a string list.
VUslClone Copies a string list.
VUslConvertToString Converts a string list to a single string.
VUslCreate Creates a string list.
VUslCreateFromString Creates a string list from a string.
VUslCutString Cuts the end of a string.
VUslDeleteString Deletes a string from a string list.
VUslDeleteSubstring Deletes a substring from a string.
VUslDestroy Destroys a string list.
VUslInsertString Inserts a string into a string list.
VUslInsertSubstring Inserts a substring into a string.
VUslJoinStrings Joins two consecutive strings.
VUslLength Returns the length of a string list.
VUslList Returns a pointer to the list of string pointers.
VUslLongest Returns the length of the longest string in a string list.
VUslPadList Pads a list with strings to achieve the specified length.
VUslPadString Pads a string with characters to achieve the specified length.
VUslSort Sorts the list of strings.
VUslSplitString Splits a string into two.
VUslTraverse Applies a user-defined function to every string in a string list.

VUslAddString

VUstrlist Functions VU Routines

Adds a string to the end of a string list.

void
VUslAddString (

ADDRESS StringList,
char *string)

VUslClone

VUstrlist Functions VU Routines

Copies a string list and returns the address of the copy.

ADDRESS
VUslClone (

ADDRESS StringList)

VUslConvertToString

VUstrlist Functions VU Routines

Converts a string list to a single string.

char *
VUslConvertToString (

ADDRESS StringList)

VUslConvertToString converts StringList to a string. Creates a string and fills it with the strings from the string list,
using \n as the line separator in the output string. If \n appears in a string in the string list, it is copied into the output
string, so it is the user’s responsibility to check for \n in the strings of the string list. The space for the string is
allocated internally using S_ALLOC, so the user is responsible for freeing the output string using S_FREE. Returns
the filled string.

VUslCreate

VUstrlist Functions VU Routines

Creates a string list.

ADDRESS
VUslCreate (

int InitialSize)

VUslCreate creates a string list with the number of slots equal to InitialSize. Returns the address of the new string
list.

VUslCreateFromString

VUstrlist Functions VU Routines

Creates a string list from a string.

ADDRESS
VUslCreateFromString (

char *string)

VUslCreateFromString creates a string list and fills it with lines from the input string, using \n in the input string to
determine the line separations for the string list. The input string can be empty. Returns the address of the new string
list.

VUslCutString

VUstrlist Functions VU Routines

Cuts the end of a string.

BOOLPARAM
VUslCutString (

ADDRESS StringList,
int sl_row,
int sl_col)

VUslCutString cuts the end of a string, sl_row, starting at the sl_col position. If sl_col is less than zero, deletes all
the characters from the string except EOS. If sl_col and sl_row are not valid positions, does not cut the string and
returns DV_FAILURE. Otherwise returns DV_SUCCESS.

VUslDeleteString

VUstrlist Functions VU Routines

Deletes a string at position sl_row from the string list.

void
VUslDeleteString (

ADDRESS StringList,
int sl_row)

VUslDeleteSubstring

VUstrlist Functions VU Routines

Deletes a substring from a string.

int
VUslDeleteSubstring (

ADDRESS StringList,
int sl_row,
int sl_col,
int count)

VUslDeleteSubstring deletes count characters from the string at sl_row of StringList, starting with the sl_col
position. If count is negative or larger than the number of characters in sl_row, deletes everything up to but not
including EOS. If sl_col and sl_row are not valid positions in StringList, does not delete any characters. This routine
never deletes the EOS character so it cannot be used to join strings; see VUslJoinStrings instead. Returns the number
of deleted characters.

VUslDestroy

VUstrlist Functions VU Routines

Destroys a string list.

void
VUslDestroy (

ADDRESS StringList)

VUslInsertString

VUstrlist Functions VU Routines

Inserts a string into a string list at the position sl_row.

void
VUslInsertString (

ADDRESS StringList,
int sl_row,
char *string)

VUslInsertSubstring

VUstrlist Functions VU Routines

Inserts a substring into a string.

BOOLPARAM
VUslInsertSubstring (

ADDRESS StringList,
int sl_row,
int sl_col,
char *substr)

VUslInsertSubstring inserts a substring, substr, at the sl_col position in the string located at sl_row. If sl_col and
sl_row are not valid positions, does not insert the substring and returns DV_FAILURE. Otherwise returns
DV_SUCCESS.

VUslJoinStrings

VUstrlist Functions VU Routines

Joins two consecutive strings.

BOOLPARAM
VUslJoinStrings (

ADDRESS StringList,
int sl_row)

VUslJoinStrings joins two consecutive strings into one and deletes the second one from the string list. If sl_row is
not a valid row or is the last string in StringList, does not join the strings and returns DV_FAILURE. Otherwise
returns DV_SUCCESS.

VUslLength

VUstrlist Functions VU Routines

Returns the number of filled slots in the string list.

int
VUslLength (

ADDRESS StringList)

VUslList

VUstrlist Functions VU Routines

Returns a pointer to the list of string pointers.

char **
VUslList (

ADDRESS StringList)

VUslList returns a pointer to the list of string pointers. This pointer is valid until the next call to any of these
functions: VUslAddString, VUslInsertString, VUslSplitString, VUslDeleteString, VUslJoinStrings, or VUslPadList.

VUslLongest

VUstrlist Functions VU Routines

Returns the length of the longest string in a string list.

int
VUslLongest (

ADDRESS StringList)

VUslPadList

VUstrlist Functions VU Routines

Pads a list with strings to achieve the specified length.

void
VUslPadList (

ADDRESS StringList,
int length,
char *string)

VUslPadList adds identical strings to the end of the string list to achieve the specified length, length. string is used
as the added string. If string is NULL, adds empty strings.

VUslPadString

VUstrlist Functions VU Routines

Pads a string with characters to achieve the specified length.

void
VUslPadString (

ADDRESS StringList,
int length,
int sl_row,
int ch)

VUslPadString adds identical characters to the end of the string located at sl_row to achieve the specified length,
length. ch is used as the added character. If char is NULL, adds blank spaces.

VUslSort

VUstrlist Functions VU Routines

Sorts the list of strings in StringList using strcmp() to define the order.

void
VUslSort (

ADDRESS StringList)

VUslSplitString

VUstrlist Functions VU Routines

Splits a string into two.

BOOLPARAM
VUslSplitString (

ADDRESS StringList,
int sl_row,
int sl_col)

VUslSplitString splits a string into two. Splits the string located at sl_row at position indicated by sl_col, placing the
second portion of the split string in a new string directly after sl_row. If the split point is not a valid position, does
not split the string and returns DV_FAILURE. Otherwise returns DV_SUCCESS.

VUslTraverse

VUstrlist Functions VU Routines

Applies a user-defined function to every string in a string list.

int
VUslTraverse (

ADDRESS StringList,
VUSLTRVRSFUNPTR fun,
ADDRESS args)

int
fun (

char *string,
int index,
ADDRESS args)

VUslTraverse applies a function to every string in the list. Stops when the function returns a non-NULL value. The
function is called with the string, its index in the list, and argument block. Returns the integer result of the function,
if any. Otherwise returns 0.

VUtextarray
VUtextarray Functions VU Routines

This module provides low-level functions for manipulating hardware text within a rectangular region of the screen.
This rectangular region is a two-dimensional array of text characters. Some applications where these routines would
be useful are terminal emulators, spreadsheet programs, and message display.

Handling a large block of text in a text array is memory-intensive. A more efficient way to handle a large block of
text is to use string lists in conjunction with a text array. In this case, the text array displays a portion of the text, and
the string list stores the entire block of text. To display the text, call VUtaFillWithStringList, which fills the text array
with text from the string list. To scroll the text, just refill the text array starting with a different point in the string list.
Edits to the text are made in the string list using VUsl routines and displayed using VUtaFillWithStringList. See also
the VUstrlist module.

The creation and modification of a text array are separate from drawing operations. Changes made to a text array do
not appear on the screen until after a call to VUtaDraw to draw the changes or to VUtaRedraw to draw the entire
array.

The VUtextarray module works with screen coordinates and character coordinates. VUtaCreate specifies the text
array size in either character coordinates, screen coordinates, or both. Note that if the text array size is given in
screen coordinates, the size of the region may not be evenly divisible by the character size. Any extra space at the
edges of the text array is referred to as slop. Text arrays must be less than or equal to 256 characters in width; there
is no limitation on height.

Two structures let you manipulate the text array in character coordinates: TA_POSITION specifies the position of a
character in the text array, and TA_RECT specifies a rectangular region of the text array. All positions specified by
these structures are zero-based. You can manipulate the structures using macros provided in VUtextarray.h.

The text array maintains a cursor showing the current position. The default position for the cursor is outside the text
array, so it is not visible unless you move it into the text array using VUtaSetCursorPos. You can set the cursor style
and color using VUtaSetCursorStyle.

Colors for the text array are specified using a 16-element color table containing color indices into the device’s color
table. Note that if the device color table changes, subsequent writes may appear in different colors.

The colors of text array characters are stored as packed colors. A packed color contains the foreground and
background colors packed together. The macros V_PACK_COLOR and V_UNPACK_COLOR let you combine
foreground and background indices into packed color format and retrieve these indices from the packed format.

Two pre-packed text colors are provided:

V_TA_NORMAL foreground == color[1], background == color[0]
V_TA_INVERSE foreground == color[0], background == color[1]

On a color system with the default color table, V_TA_NORMAL appears white on black, and V_TA_INVERSE
appears black on white. However, on a black-and-white systems the color sense is reversed, so V_TA_NORMAL
sometimes appears black on white and V_TA_INVERSE sometimes appears white on black.

Text array clipping is provided by the drawing functions VUtaDraw and VUtaRedraw. These routines take a NULL-
terminated list of clipping viewports which you can create using VUvlCreate.

If the attributes of the display device change after the text array has been created, the text array is affected. It is the
programmer’s responsibility to ensure that the current device is set to the device on which the text array was created.
If it is set differently, the following effects can result:

If the operation is a draw or redraw, the output appears on the current device instead of the device on which the
text array was created.

If the current device has a different set of fonts from the creation device, the text may not appear in the correct
size. This can change the size of the entire text array.

If the current device has a different color table from the creation device, the text can appear in unexpected
colors.

If the window size changes, you should create a new text array, copy the contents of the old text array into the new
one, and destroy the old text array.

A text array displays a tab character as a single space.

Examples
Text array creation: The following code fragment creates a text array with an orientation point at the lower left
corner anchored to the screen coordinate (0,0). The size of the text array is given both in character coordinates and
screen coordinates. The larger of the two sizes is chosen and any slop is discarded. ColorMapping is a sixteen-
element array of color indexes. The constant V_TA_NUM_COLORS is defined in VUtextarray.h to be 16.

TEXTARRAY TextArray;
DV_POINT AnchorPoint = { 0, 0 }
DV_POINT ScreenRectSize = { 20, 25 } /* size in screen coordinates */
TA_POSITION CharRectSize = { 2, 2 } /* size in character coordinates */
int TextSize = 2;
ColorMapping[V_TA_NUM_COLORS];

TextArray = VUtaCreate ((ULONG) (V_OP_LL|V_RSLVE_GREATER|V_SLOP_SHRINK),
&AnchorPoint, &ScreenRectSize, &CharRectSize, TextSize, ColorMapping);

Getting the text array’s color: The following code fragment shows how to get colors from the text array’s mini-
color table:

int fgcolor, bgcolor;
fgcolor = VUtaGetColor (TextArray, 0);
bgcolor = VUtaGetColor (TextArray, 1);

Setting the text array’s mini-color table: The following code fragment shows how to change the colors in the text
array’s mini-color table. The call sets the third element of the text array’s color table to the index of the thirty-first
element of the device’s color table and returns the old value of the third element of the text array’s mini-color table.

oldcolor = VUtaSetColor (TextArray, 3, 31);

Selecting a character with the mouse: The following code fragment translates a screen position obtained through a
mouse pick to a character position in the text array. inside is set to YES if mouse pick was inside the text array.
Otherwise inside is set to NO. The character position of the selected character is returned in CharPos.

TA_POSITION CharPos;
OBJECT location;
DV_POINT ScreenCoords;
DV_BOOL inside;
location = TloPoll (WAIT_PICK);
ScreenCoords = VOloScpGet (location);
inside = VUtaScreenToChar (TextArray, ScreenCoords, CharPos);

Scrolling the text array: The following code fragment scrolls text in a text array. The V_TRSET macro sets the
upper left and lower right corners of trect to (1, 0) and (height-1, width-1) respectively. Note that because the text

array is zero-based, 1 is subtracted from the width and height. The DownDist parameter of -1 means to move trect
up one row. VUtaMoveRect does not erase the old line so we call VUtaFillRect to fill the old line with blank_char in
color, fgcolor.

Scroll (t, blank_char)
TEXTARRAY t;
char blank_char;

{
int height, width;
TA_RECT trect;
height = VUtaGetHeight (t);
width = VUtaGetWidth (t);
V_TRSET (&trect, 1, 0, height-1, width-1);
VUtaMoveRect (t, &trect, -1, 0); /* Move trect up one row */

V_TRSET (&trect, height-1, 0, height-1, width-1);
VUtaFillRect (t, &trect, blank_char, fgcolor);

}

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel
VUtextarray Functions

#include "VUtextarray.h"

VUtaBox Returns the bounding box of the text array.
VUtaCharToScreen Converts character coordinates to screen coordinates.
VUtaCopyRect Copies a rectangle of text from one text array to another.
VUtaCrAreaSort Sorts the points of a TA_RECT.
VUtaCreate Creates a text array.
VUtaCrSort Sorts the coordinates of a TA_RECT.
VUtaDestroy Destroys a text array.
VUtaDraw Draws the changes in a text array.
VUtaFillRect Fills a rectangular region of a text array with a character.
VUtaFillWithStringList Fills a text array with strings from a string list.
VUtaGetCharSize Returns the current character size of text array.
VUtaGetColor Returns the color associated with a given index.
VUtaGetCursorPos Gets the position of the cursor.
VUtaGetCursorStyle Gets the cursor style and color.
VUtaGetHeight Returns the height of a text array in character coordinates.
VUtaGetMaxWidth Returns the maximum width of a text array.
VUtaGetString Gets a text string from a text array.
VUtaGetWidth Returns the width of a text array in character coordinates.
VUtaMoveRect Moves and copies a rectangle of text within a text array.
VUtaPutChar Writes a character one or more times to a text array.
VUtaPutString Writes a text string to a text array.
VUtaRecolor Changes the fore/background color of one or more columns.
VUtaRecolorArea Changes the fore/background color of a region in a text array.
VUtaRedraw Redraws a text array.
VUtaScreenToChar Converts screen coordinates to character coordinates.
VUtaSetColor Sets a color in the color table of a text array.
VUtaSetCursorPos Sets a new cursor position.
VUtaSetCursorStyle Sets the style of the cursor.
VUtaSwapColor Swaps fore/background colors for one or more columns.

VUtextarray Macros
V_PACK_COLOR Packs fore/background color indices together.
V_TPADD Adds values to fields of a TA_POSITION.
V_TPCOPY Copies values from one TA_POSITION to another.
V_TPSET Assigns new values to a TA_POSITION.
V_TRADD Adds values to fields of a TA_RECT.
V_TRCOPY Copies values from one TA_RECT to another.
V_TRHEIGHT Returns the height of a TA_RECT.
V_TRSET Assigns new values to a TA_RECT.
V_TRWIDTH Returns the width of a TA_RECT.
V_UNPACK_COLOR Unpacks packed colors into separate color indices.

VUtaBox

VUtextarray Functions VU Routines

Returns the bounding box of the text array.

BOOLPARAM
VUtaBox (

TEXTARRAY TextArray,
RECTANGLE *ScreenRect)

VUtaBox gets the bounding box of TextArray and puts it in ScreenRect. The bounding box includes any slop. If a
text array was created without slop, calling VUtaBox is equivalent to calling VUtaCharToScreen with CharRect set
to NULL. Returns DV_FAILURE if either TextArray or ScreenRect is NULL. Otherwise returns DV_SUCCESS.

VUtaCharToScreen

VUtextarray Functions VU Routines

Converts character coordinates to screen coordinates.

BOOLPARAM
VUtaCharToScreen (

TEXTARRAY TextArray,
TA_RECT *CharRect,
RECTANGLE *ScreenRect)

VUtaCharToScreen converts a rectangular area of TextArray to screen coordinates. The rectangular area is specified
by CharRect and passed back in ScreenRect. If CharRect is NULL, ScreenRect contains the entire region of the text
array minus any slop. Returns DV_SUCCESS if CharRect is within the text array. Otherwise returns DV_FAILURE.

VUtaCopyRect

VUtextarray Functions VU Routines

Copies a rectangle of text from one text array to another.

BOOLPARAM
VUtaCopyRect (

TEXTARRAY DestTextArray,
TA_RECT *DestCharRect,
TEXTARRAY SrcTextArray,
TA_RECT *SrcCharRect)

VUtaCopyRect copies a rectangular region from one text array to another. SrcCharRect specifies the region of the
source text array, SrcTextArray; DestCharRect specifies the region of the destination text array, DestTextArray. If the
source and destination text arrays are the same, this routine is equivalent to VUtaMoveRect. If the size of the two
rectangles differs, VUtaCopyRect begins the copy in the upper left corner of the source text array, and stops when it
reaches the edge of the rectangular region of either the source or destination text array. Returns DV_FAILURE if
both the source and destination text arrays are NULL, or if either SrcCharRect or DestCharRect are entirely outside
the bounds of their respective text arrays. Otherwise returns DV_SUCCESS.

VUtaCrAreaSort

VUtextarray Functions VU Routines

Sorts the points of a TA_RECT.

TA_RECT *
VUtaCrAreaSort (

TA_RECT *CharRect)

VUtaCrAreaSort sorts the points of the TA_RECT structure to which CharRect points, ensuring that the CharRect-
>ul is above CharRect->lr. Use this routine to sort a TA_RECT for an area of text and use VUtaCrSort to sort a
TA_RECT for a rectangle of text. See VUtaRecolorArea for a figure showing the different ways to interpret a
TA_RECT. Returns the address of the sorted CharRect.

VUtaCreate

VUtextarray Functions VU Routines

Creates a text array.

TEXTARRAY
VUtaCreate (

ULONG SpecFlag,
DV_POINT *AnchorPoint,
DV_POINT *ScreenRectSize,
TA_POSITION *CharRectSize,
int CharSize,
int *ColorMapping)

VUtaCreate creates and returns a text array for the current device. This routine only allocates and initializes the data
structure; use VUtaDraw or VUtaRedraw to draw the text array to the device. It is the programmer’s responsibility
to free the text array with a call to VUtaDestroy.

The size of the text array can be specified in either screen coordinates, ScreenRectSize, or character coordinates,
CharRectSize, or both. If the width of the text array exceeds 256 characters, the text array is not created and NULL is
returned. The position on the screen is specified in screen coordinates by AnchorPoint. CharSize is the hardware
font size in the range [1,4] for the text array’s characters.

ColorMapping is a 16-element array of color indices. If ColorMapping is NULL, a default color table is used. Once
the text array’s mini-color table is set up, you can use VUtaSetColor to change colors.

SpecFlag is a bit mask flag that sets three characteristics of the text array. It determines where the text array’s
orientation point is, how to resolve any conflicts between character and screen regions, and what to do with any
slop. To construct SpecFlag, select one flag from each of the three categories below using a bitwise OR.

The orientation flag specifies which text array orientation point is mapped to the anchor point. If the text array falls
partially or completely off the screen, the text array is clipped to the screen boundaries when drawn. Valid
orientation flags are:

V_OP_BITS All the orientation point bits.
V_OP_TOP Top of rectangle mapped to the anchor point.
V_OP_BOTTOM Bottom of rectangle mapped to the anchor point.
V_OP_LEFT Mid-left side of rectangle mapped to the anchor

point.
V_OP_RIGHT Mid-right side of rectangle mapped to the anchor

point.
V_OP_LL V_OP_BOTTOM | V_OP_LEFT
V_OP_LR V_OP_BOTTOM | V_OP_LEFT
V_OP_UL V_OP_TOP | V_OP_LEFT
V_OP_UR V_OP_TOP | V_OP_RIGHT
V_OP_CENTERED Center of rectangle mapped to the anchor point.
The rect size flag indicates how to resolve conflicts between ScreenRectSize and CharRectSize. Valid rect size flags
are:

V_RSLVE_BITS All the resolution bits.
V_RSLVE_X_GREATE

R
Use the greater of two in x direction.

V_RSLVE_Y_GREATE
R

Use the greater of two in y direction.

V_RSLVE_X_LESSER Use the lesser of two in x direction.
V_RSLVE_Y_LESSER Use the lesser of two in y direction.
V_RSLVE_GREATER Use the greater of the two x directions and

the greater of the two y directions.
V_RSLVE_LESSER Use the lesser of the two x directions and the

lesser of the two y directions.
The slop flag determines how to handle any slop in the text array. When slop is present, it is drawn in color[0] from
the color table. The orientation point determines where the slop is drawn relative to the text. If the orientation point
is V_OP_CENTERED, the slop is distributed equally on all four sides of the text array. Otherwise, the slop is drawn
opposite the orientation point. For example, if the orientation point is V_OP_LEFT, the slop is distributed to the
right, top, and bottom sides. Valid slop flags are:

V_SLOP_BITS All the slop bits.
V_SLOP_X_SHRINK Discard the slop in the x direction.
V_SLOP_Y_SHRINK Discard the slop in the y direction.
V_SLOP_X_LEAVE Leave the slop in the x direction.
V_SLOP_Y_LEAVE Leave the slop in the y direction.
V_SLOP_X_EXPAN

D
Expand the slop in the x direction by one

character.
V_SLOP_Y_EXPAN

D
Expand the slop in the y direction by one

character.
V_SLOP_SHRINK V_SLOP_X_SHRINK | V_SLOP_Y_SHRINK
V_SLOP_LEAVE V_SLOP_X_LEAVE | V_SLOP_Y_LEAVE
V_SLOP_EXPAND V_SLOP_X_EXPAND | V_SLOP_Y_EXPAND

Default values for the text array:

If the anchor point is NULL, the upper left corner of the text array is placed in the upper left corner of the screen.

A SpecFlag of (ULONG)0 centers the text array with respect to its anchor point. If the anchor point is non-NULL,
this flag leaves any slop and resolves any size conflict between screen and character specification of the region
towards the smaller size.

If both ScreenRectSize and CharRectSize are NULL, a text array 24 characters high by 80 characters wide is created.

If CharSize is 0, the default hardware font size of 1 is used.

All character cells are filled with spaces of the background color, color[0], and the foreground color, color[1].

The default color table matches the following table as closely as possible:

index name red green blue
0 black 0 0 0
1 white 255 255 255
2 red 255 0 0
3 green 0 255 0
4 yellow 255 255 0
5 dk red 127 0 0
6 dk grn 0 127 0
7 cyan 0 255 255
8 blue 0 0 255
9 magenta 255 0 255
10 gray 127 127 127
11 lt blue 127 127 255

12 purple 12 0 127
13 dk blue 0 0 0
14 khaki 127 127 0
15 lt blue 127 127 255

VUtaCrSort

VUtextarray Functions VU Routines

Sorts the coordinates of a TA_RECT.

TA_RECT *
VUtaCrSort (

TA_RECT *CharRect)

VUtaCrSort sorts the coordinates of the TA_RECT structure to which CharRect points, ensuring that the CharRect-
>ul is above and to the left of CharRect->lr. Returns the address of the sorted CharRect. See also VUtaCrAreaSort.

VUtaDestroy

VUtextarray Functions VU Routines

Destroys a text array.

BOOLPARAM
VUtaDestroy (

TEXTARRAY TextArray)

VUtaDestroy destroys the given text array. Frees the data structure only. It is the programmer’s responsibility to
clean up the screen. For example, you can call VUtaBox to determine what portion of the screen has been affected,
then clean up that portion of the screen with GRf_rectangle, TscRedraw, or GRrasdraw.

VUtaDraw

VUtextarray Functions VU Routines

Draws the changes in a text array.

BOOLPARAM
VUtaDraw (

TEXTARRAY TextArray,
RECTANGLE **Clipvps)

VUtaDraw draws the changed parts of TextArray to the screen. VUtaDraw clips the text array to any obscuring
viewports if you pass a NULL-terminated list of clipping viewports in ClipVpList. Use VUvlCreate in the VUvpList
module to create the clipping viewport list. If ClipVpList is NULL, no clipping occurs. All text is marked as drawn
after a call to this routine, even if part of the text array is clipped. The first time you call VUtaDraw for a particular
text array, any slop is drawn in color[0]. Returns DV_FAILURE if any lower-level graphics calls fail. Otherwise
returns DV_SUCCESS. See also VUtaRedraw.

VUtaFillRect

VUtextarray Functions VU Routines

Fills a rectangular region of a text array with a character.

BOOLPARAM
VUtaFillRect (

TEXTARRAY TextArray,
TA_RECT *CharRect,
int chr,
int PackedColor)

VUtaFillRect fills the rectangular region of TextArray pointed to by CharRect with the character, chr, in Color.
NULL is not a valid chr value. If CharRect is NULL, the entire TextArray is filled with the specified character.
Returns DV_FAILURE if CharRect is not within the bounds of the text array. Otherwise returns DV_SUCCESS.

VUtaFillWithStringList

VUtextarray Functions VU Routines

Fills a text array with strings from a string list.

void
VUtaFillWithStringList (

TEXTARRAY TextArray,
ADDRESS StringList,
TA_POSITION *ta_pos,
int anch_row,
int anch_col,
int color)

VUtaFillWithStringList fills a text array with strings of a string list. If ta_pos is NULL, places the strings in
TextArray starting with anch_row and anch_col. Fills every line of TextArray with the corresponding string of
StringList until it reaches EOS or the right border of TextArray. If the string does not fill the row, fills the rest of the
row with spaces. If the number of strings in StringList is less than the height of TextArray, fills the rest of the
TextArray with spaces. In one-line mode (ta_pos != NULL) follows the same procedure, but fills only one row,
anch_row, starting with anch_col.

VUtaGetCharSize

VUtextarray Functions VU Routines

Returns the current character size of text array.

int
VUtaGetCharSize (

TEXTARRAY TextArray)

VUtaGetCharSize returns the current character size associated with TextArray. The character size is device-
dependent. See also GRch_Size.

VUtaGetColor

VUtextarray Functions VU Routines

Returns the color associated with a given index.

int
VUtaGetColor (

TEXTARRAY TextArray,
int Index)

VUtaGetColor returns the Index-th element of the text array’s mini-color table, which is a index into the device’s
color table. Returns -1 if passed an illegal index.

VUtaGetCursorPos

VUtextarray Functions VU Routines

Gets the position of the cursor.

TA_POSITION *
VUtaGetCursorPos (

TEXTARRAY TextArray,
TA_POSITION *ta_pos)

VUtaGetCursorPos returns the cursor position. ta_pos is a TA_POSITION structure passed to the routine, which fills
it with the current cursor position and returns it. This lets you pass in an old cursor position and reuse it for the new
cursor position.

VUtaGetCursorStyle

VUtextarray Functions VU Routines

Gets the cursor style and color.

V_UTA_CURSOR_ENUM *
VUtaGetCursorStyle (

TEXTARRAY TextArray,
TA_PACKED_COLOR *cursor_color)

VUtaGetCursorStyle returns the cursor style as the return value and the colors in cursor_color. Cursor styles are
V_UTA_UNDERSCORE, V_UTA_REVERSE, and V_UTA_COLOR. The colors apply when the cursor style is
V_UTA_COLOR.

VUtaGetHeight

VUtextarray Functions VU Routines

Returns the height of a text array in character coordinates.

int
VUtaGetHeight (

TEXTARRAY TextArray)

VUtaGetHeight returns the number of characters that fit vertically in the text portion of the text array.

VUtaGetMaxWidth

VUtextarray Functions VU Routines

Returns the maximum width of a text array.

int
VUtaGetMaxWidth (void)

VUtaGetString

VUtextarray Functions VU Routines

Gets a text string from a text array.

char *
VUtaGetString (

TEXTARRAY TextArray,
char *Buf,
TA_PACKED_COLOR *LeadingCharColor,
TA_POSITION *CharPos,
int MaxCols)

VUtaGetString returns the string, not longer than MaxCols, from TextArray starting at CharPos. Also places the
string in Buf and the packed color of the leading character in LeadCharColor. If MaxCols is negative,
VUtaGetString returns the string from CharPos to the right edge of the text array. If MaxCols is non-negative, the
length of the Buf must be at least MaxCols+1 to allow for the string terminator. If MaxCols is negative, the buffer
must be large enough for a string that extends from CharPos to the right edge of the text array. VUtaGetWidth
routine helps calculate the buffer size.

VUtaGetWidth

VUtextarray Functions VU Routines

Returns the width of a text array in character coordinates.

int
VUtaGetWidth (

TEXTARRAY TextArray)

VUtaGetWidth returns the number of characters that fit horizontally in the text portion of the TextArray.

VUtaMoveRect

VUtextarray Functions VU Routines

Moves and copies a rectangle of text within a text array.

BOOLPARAM
VUtaMoveRect (

TEXTARRAY TextArray,
TA_RECT *CharRect,
int DownDist,
int RightDist)

VUtaMoveRect moves and copies a rectangular region of text within a text array. CharRect specifies the region;
DownDist and RightDist specify the number of character spaces to move the region. Negative DownDist and
RightDist values indicate movement up and to the left respectively. The application must explicitly erase any
characters left on the screen. For an illustration of scrolling the text array, see the examples section.

VUtaPutChar

VUtextarray Functions VU Routines

Writes a character one or more times to a text array.

BOOLPARAM
VUtaPutChar (

TEXTARRAY TextArray,
int chr,
int PackedColor,
TA_POSITION *CharPos,
int MaxCols)

VUtaPutChar writes a single character, chr, repeatedly to the text array. Writing begins at the specified character
position, CharPos, and stops after writing MaxCols number of columns or when it reaches the right edge of the
TextArray, whichever happens first. If MaxCols is negative, writing continues to the right edge.

VUtaPutString

VUtextarray Functions VU Routines

Writes a text string to a text array.

BOOLPARAM
VUtaPutString (

TEXTARRAY TextArray,
char *Str,
int PackedColor,
TA_POSITION *CharPos,
int MaxCols)

VUtaPutString puts a string, Str, of the packed color, PackedColor, into the text array. If the column plus the length
of Str is greater than the width of the text array, writing stops at right edge.

VUtaRecolor

VUtextarray Functions VU Routines

Changes the fore/background color of one or more columns.

BOOLPARAM
VUtaRecolor (

TEXTARRAY TextArray,
int PackedColor,
TA_POSITION *CharPos,
int MaxCols)

VUtaRecolor changes the foreground and/or background color of one or more columns in a text array row. Starting
at CharPos in TextArray, VUtaRecolor changes the color of the number of columns specified in MaxCols to the
packed colors, PackedColor. If MaxCols is negative, the change starts at CharPos and continues to the right edge of
the text array, or to the end of the string.

VUtaRecolorArea

VUtextarray Functions VU Routines

Changes the fore/background color of a region in a text array.

BOOLPARAM
VUtaRecolorArea (

TEXTARRAY TextArray,
int PackedColor,
TA_RECT *Region,
V_UTA_AREA_ENUM Mode)

VUtaRecolorArea changes the foreground and/or background color of region, specified by Region, of a text array.
PackedColor specifies the foreground and background colors. Mode indicates whether the recolored region is a
rectangle or an area. If either or both points in Region are outside the defined text array, VUtaRecolorArea
reinterprets them as points at the edge of the text array. The reinterpreted position depends on MODE. Valid Mode
values are:

VUtaRedraw

VUtextarray Functions VU Routines

Redraws a text array.

BOOLPARAM
VUtaRedraw (

TEXTARRAY TextArray,
RECTANGLE **Clipvps)

VUtaRedraw redraws entire text array to the screen. VUtaRedraw clips the text array to any obscuring viewports if
you pass a NULL-terminated list of clipping viewports in ClipVpList. Use VUvlCreate in the VUvplist module to
create the clipping viewport list. If ClipVpList is NULL, no clipping occurs. Any slop is redrawn in color[0]. For a
discussion of slop, see VUtaCreate. All text is marked as drawn after a call to this routine, even if part of the text
array is clipped. Returns DV_FAILURE if it is unable to draw the text array. See also VUtaDraw.

VUtaScreenToChar

VUtextarray Functions VU Routines

Converts screen coordinates to character coordinates.

BOOLPARAM
VUtaScreenToChar (

TEXTARRAY TextArray,
DV_POINT *ScreenCoords,
TA_POSITION *CharPos)

VUtaScreenToChar determines what character position is associated with a given screen position, ScreenCoords,
and passes it back in CharPos. Returns YES if position is within the text array. Otherwise returns NO.

VUtaSetColor

VUtextarray Functions VU Routines

Sets a color in the color table of a text array.

int
VUtaSetColor (

TEXTARRAY TextArray,
int Index,
int Color)

VUtaSetColor sets the Index-th position in the text array’s color table to the device’s color index, Color. To convert
an RGB value to the closest corresponding color index for the Color parameter, use GRrgbtoindex. Affected areas
are marked to be redrawn by the next VUtaDraw. Returns the old color if successful. Otherwise returns -1.

VUtaSetCursorPos

VUtextarray Functions VU Routines

Sets a new cursor position.

void
VUtaSetCursorPos (

TEXTARRAY TextArray,
TA_POSITION *new_pos)

VUtaSetCursorStyle

VUtextarray Functions VU Routines

Sets the style of the cursor.

void
VUtaSetCursorStyle (

TEXTARRAY TextArray,
V_UTA_CURSOR_ENUM cursor_style,
int cursor_color)

VUtaSetCursorStyle sets the cursor style. Valid cursor styles are V_UTA_UNDERSCORE, V_UTA_REVERSE, and
V_UTA_COLOR. If you specify V_UTA_COLOR, you must specify packed colors using cursor_color. The default
cursor style is V_UTA_UNDERSCORE.

VUtaSwapColor

VUtextarray Functions VU Routines

Swaps fore/background colors for one or more columns.

BOOLPARAM
VUtaSwapColor (

TEXTARRAY TextArray,
TA_POSITION *CharPos,
int MaxCols)

VUtaSwapColor swaps the foreground and background colors for one or more cells in the text array. Starts swapping
at CharPos and continues for MaxCols number of columns or until it reaches the edge of the text array. If MaxCols
is negative, swapping continues until it reaches the right edge of the text array. This routine can be used for
highlighting with inverse video and for cursor display. See also VUtaRecolor.

V_PACK_COLOR

VUtextarray Functions VU Routines

Packs fore/background color indices together.

TA_PACKED_COLOR
V_PACK_COLOR (

int Foreground,
int Background)

V_PACK_COLOR packs the foreground and background colors into a TA_PACKED_COLOR. Returns the packed
colors.

V_TPADD

VUtextarray Functions VU Routines

Adds values to fields of a TA_POSITION.

TA_POSITION *
V_TPADD (

TA_POSITION *TextPos,
int Row,
int Col)

V_TPADD takes a pointer, TextPos, to a TA_POSITION structure, adds the value of Row to TextPos->Row and the
value of Col to TextPos->Col, and returns TextPos.

V_TPCOPY

VUtextarray Functions VU Routines

Copies values from one TA_POSITION to another.

TA_POSITION *
V_TPCOPY (

TA_POSITION *DestTextPos,
TA_POSITION *SourceTextPos)

V_TPCOPY copies the value of the TA_POSITION structure, SourceTextPos, to DestTextPos and returns
DestTextPos.

V_TPSET

VUtextarray Functions VU Routines

Assigns new values to a TA_POSITION.

TA_POSITION *
V_TPSET (

TA_POSITION *TextPos,
int Row,
int Col)

V_TPSET takes a pointer, TextPos, to a TA_POSITION structure, sets TextPos->row to Row and TextPos->col to
Col, and returns TextPos.

V_TRADD

VUtextarray Functions VU Routines

Adds values to fields of a TA_RECT.

TA_RECT *
V_TRADD (

TA_RECT *CharRect,
int ulRow,
int ulCol,
int lrRow,
int lrCol)

V_TRADD takes a pointer, CharRect, to a TA_RECT structure and adds the upper left and lower right coordinates to
CharRect. Return CharRect.

V_TRCOPY

VUtextarray Functions VU Routines

Copies values from one TA_RECT to another.

TA_RECT *
V_TRCOPY (

TA_RECT *DestTextRect,
TA_RECT *SourceTextRect)

V_TRCOPY copies the SourceTextRect to the DestTextRect and returns DestTextRect.

V_TRHEIGHT

VUtextarray Functions VU Routines

Returns the height of a TA_RECT.

int
V_TRHEIGHT (

TA_RECT *TextRect)

V_TRSET

 VUxxx Functions VUer Routines

Assigns new values to a TA_RECT.

TA_RECT *
V_TRSET (

TA_RECT *CharRect,
int ulRow,
int ulCol,
int lrRow,
int lrCol)

V_TRSET sets the upper left corner and lower right corner of the TA_RECT structure, CharRect, to the values ulRow,
ulCol, lrRow, lrCol and returns CharRect.

V_TRWIDTH

VUtextarray Functions VU Routines

Returns the width of the TA_RECT structure, TextRect.

int
V_TRWIDTH (

TA_RECT *TextRect)

V_UNPACK_COLOR

VUtextarray Functions VU Routines

Unpacks packed colors into separate color indices.

TA_PACKED_COLOR
V_UNPACK_COLOR (

TA_PACKED_COLOR Color,
int Foreground,
int Background)

V_UNPACK_COLOR unpacks a packed color into the parameters Foreground and Background. Returns the packed
color.

VUticlabel
VUticlabel Functions VU Routines

See Also
VPdgticlabfcn

Example
The following code fragment assigns the table months as time axis tick labels.

static char *months[] = {
"J", "F", "M", "A", "M", "J",
"J", "A", "S", "O", "N", "D"
};

VPdgslots (dgp, 24);
VUdgticlabtab (dgp, V_TIME_AXIS, months, 12);

This yields the following labeling of the time axis (if there is room for all 24 tick marks):

If there is only room for 12 tick marks (remember that there are still 24 slots, or time slices), it yields:

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUticlabel Functions
VUdgticlabtab Axis tick mark labeling routine.

VUdgticlabtab

VUticlabel Functions VU Routines

Axis tick mark labeling routine.

void
VUdgticlabtab(

ADDRESS dgp,
int axis_type,
char *(*table)[],
int size)

VUdgticlabtab assigns a table of tick label strings to the time axis or to one of the two spatial axes. These strings are
used to label the tick marks on the specified axis. These axes are discrete, meaning that they can only have integral
values. The label table should have one entry for each possible tick value. If there are fewer entries in the table than
possible values along an axis, the table is treated as a cyclic table. Valid arguments are:

dgp is the address of the data group being assigned the tick labeling table.
axis_type tells which axis is to get these labels. Acceptable values are: V_FIRST_AXIS for the first spatial

dimension axis, used to indicate the columns of a matrix variable; V_SECOND_AXIS for the second spatial
dimension axis, used to indicate the rows of a matrix variable; V_TIME_AXIS for the time axis.

table is the address of a table of pointers to strings used to label the tick marks.
size is the number of labels in the table.

Diagnostics
The routine creates a tick labeling function that maps tick #1 to the first element in the table. To control how the tick
marks are mapped to the table entries, use VPdgticlabfcn. To control the labeling of the value axis ticks, use
VPvdticlabfcn.

VUtraverse
VUtraverse Functions VU Routines

Data group function utilities.

Examples
If PrintAddressOfThing is a function that prints an address, the following code fragment demonstrates how to print
the addresses of all variable descriptors associated with a data group:

/* Where vdp is the first variable descriptor in the data group. */
VUvdtraverse (vdp, PrintAddressOfThing);

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUtraverse Functions
VUdgtraverse Traverses data groups, applies specified function.
VUvdtraverse Traverses variable descriptors, applies specified function.

VUdgtraverse

VUtraverse Functions VU Routines

Traverses data groups, applies specified function.

void
VUdgtraverse (

ADDRESS dgp,
VUDGTRVRSFUNPTR function)

void
function (

DATAGROUP dgp)

VUdgtraverse traverses linked lists of data groups, performing the function specified by function on each of them.
The caller specifies the first data group in the linked list, and the address of the function. The addressed function is
called with a single argument which is the address of a data group.

VUvdtraverse

VUtraverse Functions VU Routines

Traverses variable descriptors, applies specified function.

void
VUvdtraverse (

ADDRESS vdp,
VUVDTRVRSFUNPTR function)

void
function (

VARDESC vdp)

VUvdtraverse performs the function specified by function on every variable descriptor in the linked list specified by
vdp. The caller specifies the first variable descriptor in the linked list, and the address of the function. The addressed
function is called with a single argument which is the address of a variable descriptor in the list.

VUvplist
VUvplist Functions VU Routines

Manages viewport lists. This module includes routines for creating a NULL-terminated list of viewports from a
clipping viewport and a NULL-terminated list of obscuring viewports, copying those lists, and destroying those lists.

The list returned by VUvlCreate is allocated by this module. After the caller is finished with this list, it should be
freed by calling VUvlDestroy.

Examples
The following code fragment demonstrates the use of VUvlCreate to create a list of clipping viewports given that
viewport2 is obscuring viewport1 as shown in the following illustration.

ADDRESS viewport1, viewport2;
RECTANGLE viewport1,viewport2, *obvplist[2], **clipvplist;

These lines construct a NULL-terminated list of obscuring viewports:
obvplist[0]=&viewport2;
obvplist[1]=(RECTANGLE *)NULL

And these lines send the resulting list to VUvlCreate to return the list of clipping viewports:
clipvplist=VUvlCreate (&viewport1, obvplist);

clipvplist must be freed with a call to VUvlDestroy.

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUvplist Functions
VUvlCopy Makes a copy of an existing viewport list.
VUvlCreate Creates and returns a clipping viewport list.
VUvlDestroy Destroys a viewport list.

VUvlCopy

VUvplist Functions VU Routines

Makes a copy of an existing viewport list.

RECTANGLE **
VUvlCopy (

RECTANGLE **clipvps)

VUvlCreate

VUvplist Functions VU Routines

Creates and returns a clipping viewport list.

RECTANGLE **
VUvlCreate (

RECTANGLE *invp,
RECTANGLE **outvps)

VUvlCreate creates and returns a clipping viewport list given a viewport and an obscuring viewport list. The
obscuring viewport list is a NULL-terminated list of pointers to viewports that the viewport should be outside of. If
outvps is NULL, then there are no viewports that occlude this one.

VUvlDestroy

VUvplist Functions VU Routines

Destroys a NULL-terminated list of pointers to viewports.

void
VUvlDestroy (

RECTANGLE **clipvps)

VUwinevent
VUwinevent Functions VU Routines

VUaxis VUexit VUstring VUtraverse
VUcopyright VUpixrep VUstrlist VUvplist
VUdebug VUregistry VUtextarray VUwinevent
VUdevice VUsearchpath VUticlabel

VUwinevent Functions
VUweReportEvent Reports window events at a specified level of detail.

VUweReportEvent

VUwinevent Functions VU Routines

Reports window events at a specified level of detail.

void
VUweReportEvent (

WINEVENT *we,
int level)

VUweReportEvent reports window events at a specified level of detail. The WINEVENT structure is defined in the
header file dvGR.h. we is the window event pointer. level specifies the level of detail to be reported. Valid levels of
detail are:

4 Report every field in the window event structure, we.
3 Report information relevant to the event type, plus the eventdata,

count, and state fields of the WINEVENT structure.
2 Report information relevant to the event type, plus the exposed

rectangle list, rectlist.
1 Report only information relevant to the event type.
0 Report only the event type.

GR Routines
GR Routines

The GR routines are the lowest level of device-independent graphics routines.

The routines expect the screen coordinates, which are device-dependent. If you want a routine to be device-
independent, you can use GRvcs_to_scs to convert virtual coordinates, in the range 0 <= x, y < 32768, into
corresponding screen coordinates. In virtual coordinates, the point (0,0) corresponds to the lower left corner of the
screen, and (32767,32767) corresponds to the upper right corner. These routines use DV_POINT structures to pass
the coordinates of a point. Polar coordinates are in a PLR_POINT data structure. These types are defined in dvstd.h.

GR Modules
All modules in the GR layer require the following #include files:

#include "std.h"
#include "dvstd.h"
#include "dvGR.h"
#include "GRfundecl.h"

GRcolor Manages the color table and device foreground and background colors.
GRcursor Manages locator cursor and picking.
GRcur ve Routines for calculating and drawing curves.
GRdevice Device setup and management.
GRdraw Manages drawing and positioning.
GRinquiry Routines for getting information about the display device.
GRpalette Routines for using the color palette.
GRraster Routines for handling raster operations.
GRrqpcurve Routines for calculating and drawing rational quadratic parametric (rqp) curves.
GRtext Routines for drawing hardware text.
GRtransform Converts between screen and virtual coordinates.
GRvtext Routines for managing vector text.
GRwinevent Routines for managing window events.

GRcolor
GRcolor Functions GR Routines

Utilities for setting up and editing the color table, and for selecting colors for drawing.

Each device has a separate color table. All routines that manipulate color tables use the color table associated with
the current device. The maximum size of the color table is determined at the time the device is opened and cannot be
changed.

Utilities are provided for converting indices in the color table to RGB format and vice versa. RGB format specifies a
color using three numbers in the range [0,255], where each number corresponds to the intensity of one of the
additive primary colors: red, green, and blue.

Diagnostics
GRrgbtoindex may not return the best approximation of the desired color, since it uses Euclidean distance in RGB
space as a measure of the proximity of the index to the specified color. Sometimes a closer match results from
measuring the distance in a different space, such as Hue-Saturation-Value (HSV) space.

The color index is device-dependent. If a color must be saved for use on other devices, save its RGB components
instead of its index.

GRs_color_table is device-dependent, which means it depends on the number of colors available in the device and
whether or not the colors can be modified.

Except when contiguous planes are used under X, all pixels for color tables created by DV-Tools window creation
routines are read-only. If the pixel referred to by an index in a color table is read-only and a color change is
requested for that index (by GRs_index_color or by replacing the entire table with GRs_color_table), the color
change may not appear in the display until objects that use that color are redrawn. Until objects are redrawn, there
may be no color change or an unpredictable change in the display.

Examples
Setting the color table. The following code fragment sets the color table to five colors: black, white, yellow, green,

and red. It then draws the color palette that represents this table. Only these five colors are included in the palette.
static RECTANGLE palette_vp = {{ 0,0 }, { 600, 450 }};

COLOR_TABLE new_ct = /* New color table with its values. */
{
5, /* Number of entries in the table. */
{ /*
{-1, 0, 0, 0}, /* 0 = Black */
{-1, 255, 255, 255}, /* 1 = White */
{-1, 255, 255, 0}, /* 2 = Yellow */
{-1, 0, 255, 0}, /* 3 = Green */
{-1, 255, 0, 0}, /* 4 = Red */
}};

/* Make new_ct the new color table. */
GRs_color_table (&new_ct);

Examining the color table. The following code fragment inspects the color table of the current device and prints
the RGB values of each color.

int i;
COLOR_TABLE *ctp; /* ctp is a pointer to the table. */

GRg_color_table (&ctp);

for (i = 0; i < ctp- >ctsize; i++)
printf ("#%d: red =%d green =%d blue =%d \n", i, ctp->ct[i].red, ctp-

>ct[i].green, ctp->ct[i].blue);

Setting foreground and background color. The following code fragment writes text on the screen. The text string
has a red foreground and yellow background, as defined by GRcolor and GRbackcolor respectively.

int color_index;
DV_POINT p;

/* Get index from RGB values. Set foreground color to red. */
GRrgbtoindex (255, 0, 0, &color_index);
GRcolor (color_index);

/* Get index from RGB values. Set background color to yellow. */
GRrgbtoindex (255, 255, 0, &color_index);
GRbackcolor (color_index);

/* Move to the point (200, 300). */
p.x = 200;
p.y = 300;
GRmove (&p);

/* Draw the text at that point. */
GRtext ("This red text has a yellow background.");

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRcolor Functions
+

GRappend_color Appends a color to the color table.
GRbackcolor Selects the background color.
GRcolor Selects the foreground color.
GRdrop_color Drops the last color from the color table.
GRg_color_table Gets the size and contents of the current lookup table.
GRg_pixel Gets the device-dependent color value.
GRg_real_color_tab Gets the actual color table that the device is using.
GRindextorgb Converts a color table index to an RGB value.
GRpixeltorgb Gets the RGB values corresponding to a device-dependent color value.
GRrgbtoindex Converts an RGB value to a color table index.
GRs_color_table Sets up the color lookup table.
GRs_index_color Sets the index-th entry in the color table.
GRs_index_rw Sets the pixel indicated by the index-th entry in the color table to read-

write or read-only.

GRappend_color

GRcolor functions GR Routines

Appends a color to the color table.

BOOLPARAM
GRappend_color (

RGB_SPEC *rgb)

GRappend_color appends the color specified in rgb to the end of the current color table. Fails if the current table is
already at its maximum allowable size or if the device doesn’t support this operation. Returns DV_SUCCESS or
DV_FAILURE.

Note that DV-Tools always creates color tables with the maximum number of slots. Therefore, GRappend_color
fails unless preceded by one or more calls to GRdrop_color.

GRbackcolor

GRcolor functions GR Routines

Selects the background color.

BOOLPARAM
GRbackcolor (

int color_index)

GRbackcolor selects the background color to be used for subsequent drawing operations, using color_index, an
index in the color table. This color is used for erasing and as the background color for text.

If color_index is larger than the largest color table array index, the index is adjusted in a device-dependent way,
usually by using index mod color_table_size.

Returns DV_SUCCESS or DV_FAILURE.

GRcolor

GRcolor functions GR Routines

Selects the foreground color.

BOOLPARAM
GRcolor (

int color_index)

GRcolor selects the foreground color to be used for subsequent drawing operations, using color_index, an index in
the color table. The foreground color is used to draw all the graphics primitives.

If color_index is larger than the largest color table array index, the index is adjusted in a device-dependent way,
usually by using index mod color_table_size.

Returns DV_SUCCESS or DV_FAILURE.

GRdrop_color

GRcolor functions GR Routines

Drops the last color from the color table.

BOOLPARAM
GRdrop_color (void)

GRdrop_color drops the color at the end of the current color table. Fails if driver doesn’t support this operation.
Returns DV_SUCCESS or DV_FAILURE.

GRg_color_table

GRcolor functions GR Routines

Gets the size and contents of the current lookup table.

BOOLPARAM
GRg_color_table (

COLOR_TABLE **color_table)

GRg_color_table gets the address of the current color lookup table in color_table. This includes the size of the table.
The argument color_table must be the address of a pointer to a structure of type COLOR_TABLE. Do not modify the
structure whose address is returned because it is used internally by the GR routines. To get the actual color table on
some devices such as X, you must call GRg_real_color_tab. Returns DV_SUCCESS or DV_FAILURE.

GRg_pixel

GRcolor functions GR Routines

Gets the device-dependent color value.

ULONG
GRg_pixel (

ULONG index)

GRg_pixel gets the device-dependent color value that corresponds to the color index, index. This color value is
useful when you need the device-dependent representation of a color. Returns the device-dependent color in a
ULONG. In X, this is the pixel value.

GRg_real_color_tab

GRcolor functions GR Routines

Gets the actual color table that the device is using.

BOOLPARAM
GRg_real_color_tab (

COLOR_TABLE **color_table)

GRg_real_color_tab gets the address of the color table that the device is actually using. Returns the address in
color_table. On some devices such as X that reserve or limit colors, this color table may differ from the color table
that was set. Returns DV_SUCCESS or DV_FAILURE.

GRindextorgb

GRcolor functions GR Routines

Converts a color table index to an RGB value.

BOOLPARAM
GRindextorgb (

int color_index,
int *red,
int *green,
int *blue)

GRindextorgb converts a color table index, color_index, to its equivalent RGB representation, red, green, blue.
Returns DV_SUCCESS or DV_FAILURE.

color_index must contain a value in the range of the color table array. red, green, and blue are set to the red, green,
and blue components of the color in the color lookup table.

GRpixeltorgb

GRcolor functions GR Routines

Gets the RGB values corresponding to a device-dependent color value.

BOOLPARAM
GRpixeltorgb (

ULONG pixel,
UBYTE *red,
UBYTE *green,
UBYTE *blue)

GRpixeltorgb gets the RGB values corresponding to the device-dependent color value, pixel. The RGB values are
returned in red, green, and blue, and are in the range [0,255]. They can be used to set colors in DataViews. Device-
dependent color values are returned by GRg_pixel. Returns DV_SUCCESS or DV_FAILURE.

GRrgbtoindex

GRcolor functions GR Routines

Converts an RGB value to a color table index.

BOOLPARAM
GRrgbtoindex (

int red,
int green,
int blue,
int *color_index)

GRrgbtoindex, given a color in RGB format, red, green, blue, returns the index of the color nearest it in the color
table in color_index. Returns DV_SUCCESS or DV_FAILURE.

red, green, and blue must each contain a value in the range [0,255], with 255 being the most intense.

color_index contains an integer value which represents the number of an array element in the color lookup table.
The particular array element represented by this index contains a combination of RGB values which are closest to
those values passed to GRrgbtoindex.

GRs_color_table

GRcolor functions GR Routines

Sets up the color lookup table.

BOOLPARAM
GRs_color_table (

COLOR_TABLE *color_table)

GRs_color_table sets up the color table for the current device. After calling GRopen to open the device, call
GRs_color_table to set up the color table. You can pass a color_table setting of NULL to initialize the color table to
device-dependent default values, or you can set up your own color table structure, as described below, and pass its
address. Returns DV_SUCCESS or DV_FAILURE.

To create a new color table, follow these three steps:

1. Define the color table data structure and declare a variable of that type. The structure is:
typedef struct

{
int ctsize; /* size of color table */
RGB_SPEC ct[256]; /* array of no more than 256 RGB values */
} COLOR_TABLE;

COLOR_TABLE new_color_table;

Set ctsize to the actual number of elements in the new color table, which must be less than or equal to 256.
2. Initialize each RGB_SPEC in the table to the desired RGB value for that color. (See RGB_SPEC data

structure in dvstd.h).
3. Call GRs_color_table with a pointer to new_color_table.

You can call GRs_color_table on a device that already has a color table. Doing this changes the color table for the
device, and consequently changes the foreground and background colors of the device. To reset the foreground and
background colors after calling GRs_color_table, call TscDefForecolor and TscDefBackcolor or GRcolor and
GRbackcolor.

GRs_index_color

GRcolor functions GR Routines

Sets the index-th entry in the color table.

BOOLPARAM
GRs_index_color (

int index,
RGB_SPEC *rgb)

GRs_index_color changes the index-th color in the table to the given RGB value. Returns DV_SUCCESS or
DV_FAILURE.

In X, this routine works most smoothly if the pixel indicated by the given index is read-write. If the pixel is read-
write, it is reset to the new RGB value, and the change appears in the display immediately. If the pixel is read-only,
the color change may not appear until objects are redrawn. Until objects are redrawn, they may show an
unpredictable color change.

GRs_index_rw

GRcolor functions GR Routines

Sets the pixel indicated by the index-th entry in the color table to read-write or read-only.

BOOLPARAM
GRs_index_rw (

int index,
BOOLPARAM rw)

GRs_index_rw makes the pixel indicated by the index-th entry in the color table read-write (rw = TRUE) or read-
only (rw = FALSE). Returns DV_SUCCESS or DV_FAILURE.

This routine works only for X drivers whose colormaps support read-write color cells.

GRcursor
GR Functions GR Routines

Manages locator cursor and picking.

Diagnostics
Depending on the device, mouse button presses can have a different priority than key presses, so the “button queue”
may be emptied first, regardless of the order in which key presses entered the queues.

Before using GRcr_poll, you must open the locator cursor or the keyboard for polling by calling GRcr_open_poll.
To free the keyboard for normal use, call GRcr_close_poll.

GRlocate may not return when certain keys are pressed, depending on the operating system and the device. The
<Spacebar> always works. For example, some devices use the numeric keypad to move the cursor.

To move the locator cursor on non-mouse systems, it is necessary to close polling with GRcr_close_poll, call
GRmove, and reopen polling with GRcr_open_poll.

Examples
Getting position and pick information. The following code fragment prints the cursor position until user presses
the <q> key.

DV_POINT pt;

GRcr_open_poll();
while (’q’!= GRcr_poll (&pt))

printf ("current coordinates are (%d, %d)\n", pt.x, pt.y);

GRcr_close_poll();

Blocking for picks. The following code fragment waits for user to choose a position on the screen:
int key;
DV_POINT pt;

key = GRlocate (&pt);
printf ("keycode:%d at (%d, %d)\n", key, pt.x, pt.y);

GRunlocate (key, &pt); /* To undo the pick. */

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRcursor Functions
GRcr_close_poll Turns off the graphics cursor.
GRcr_define Sets the graphical representation of the cursor.
GRcr_event Sets an event flag.
GRcr_open_poll Turns on the graphics cursor.
GRcr_poll Polls the cursor.
GRcr_status Returns the status of the cursor.
GRlocate Reads the cursor position.
GRunlocate Pushes the cursor-event stack.

Unless otherwise noted, these routines return YES if successful, NO if not.

GRcr_close_poll

GRcursor functions GR Routines

Turns off the graphics cursor.

BOOLPARAM
GRcr_close_poll (void)

GRcr_close_poll turns off the graphics cursor on the selected device and sets the current position (CP) to the last
cursor position.

GRcr_define

GRcursor functions GR Routines

Sets the graphical representation of the cursor.

BOOLPARAM
GRcr_define (

ADDRESS pattern)

GRcr_define sets the graphics cursor for the current device to the bit pattern pointed to by pattern. Currently
supported for X platforms, but not MS Windows. See the device-specific notes for more information.

GRcr_event

GRcursor functions GR Routines

Sets an event flag.

BOOLPARAM
GRcr_event (

int new_eventflag,
int *current_eventflag)

GRcr_event sets the polling mode of GRcr_poll to new_eventflag and returns the old mode in current_eventflag. The
four possible cases, defined in dvGR.h, are:

V_LOC_CHANGE_WAIT Wait for a change in the state of the
locator; either a move, a button, or a
key press.

V_LOC_PICK_WAIT Wait for a button or key press. This is the
same as the GRlocate event.

V_LOC_NO_WAIT Return immediately and get the current
position. Returns NULL if there was
no key or button press. This is the
default.

V_LOC_PICK_NO_WAIT Return immediately; but unlike the
previous flag, do NOT get the valid
current position. Returns NULL if
there was no key or button press. This
saves the overhead of asking the
device for its current position.

If new_eventflag is NULL, the current polling mode value is returned without change.

GRcr_open_poll

GRcursor functions GR Routines

Turns on the graphics cursor.

BOOLPARAM
GRcr_open_poll (void)

GRcr_open_poll turns on the graphics cursor for the selected device at the current position.

GRcr_poll

GRcursor functions GR Routines

Polls the cursor.

int
GRcr_poll (

DV_POINT *pt)

GRcr_poll polls the cursor for input, returns an int containing information about key or button presses since the last
call to GRlocate or GRcr_poll, and gets the most recent cursor position pt. The macros GR_BUTTON and GR_KEY,
defined in the include file dvGR.h, can be used to extract the information returned. GRcr_poll returns the first key or
button pressed and queues up the remaining calls. Successive calls to GRcr_poll return queued keys and buttons. See
the Diagnostics section at the end of this module.

GRcr_status

GRcursor functions GR Routines

Returns the status of the cursor.

BOOLPARAM
GRcr_status (

DV_BOOL *onoff,
DV_POINT *pt,
ADDRESS *raster)

GRcr_status gets information about the polled cursor and returns the status of the graphics cursor. onoff indicates
whether the cursor is open for polling or not. pt points to the current cursor position. raster is not used currently. To
get the device-dependent representation of the cursor, see GRget.

GRlocate

GRcursor functions GR Routines

Reads the cursor position.

int
GRlocate (

DV_POINT *p)

GRlocate waits for a key press then reads the cursor position in screen coordinates. Returns the ASCII code of the
key that was pressed and the location of the cursor in p. This lets the user move the cursor with a joystick or mouse
before pressing a key. If the device has a mouse, pressing a mouse button returns the number of the button. This
routine does not require a preceding call to GRcr_open_poll, nor must GRcr_close_poll be closed to free the
keyboard. See also Diagnostics.

GRunlocate

GRcursor functions GR Routines

Pushes the cursor-event stack.

BOOLPARAM
GRunlocate (

int key,
DV_POINT *location)

GRunlocate pushes a screen location and key press onto the cursor-event stack. The next time GRlocate or
GRcr_poll is called, the result is the same as if the user had made the key press. The event stack is checked before
the cursor playback. The stack has a fixed size. If the stack is full, the routine returns DV_FAILURE. Otherwise
returns DV_SUCCESS. The event being pushed is a locate event and must have a key press associated with it. If key
press is NULL, then the routine sets it to button number 1. The key press must be in the correct format. The
GR_SET_KEY and GR_SET_BUTTON macros can be used to convert the key press to the correct format. If the key
press comes from a previous call to GRlocate, it is already in the correct format.

GRcurve
GRcurve Functions GR Routines

Routines to calculate and draw curves.

These routines manipulate and draw parametric cubic curves based on cubic polynomials of the form:
p(t) = a0 * t3 + a1 * t2 + a2 * t + a3

where p(t), a0, a1, a2, and a3 are coordinate pairs. (For a discussion of cubic curves, see any computer graphics
textbook.) This module handles the following types of cubic curves:

Cubic polynomials, which are curves represented in the above polynomial representation.
Bezier curves, which use four control points to define cubic curves. Bezier representations of curves are easy for

users to manipulate graphically.
Uniform cubic B-splines, which use four or more control points to define series of smoothly connected cubic

curves. This type of curve approximates the B-spline control polygon, which is the set of lines that joins the
control points of the curve.

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRcurve Functions
GRbezsplit Splits a cubic Bezier curve in half.
GRbeztocub Converts cubic Bezier to coefficients for cubic curve.
GRbspcubics Gets the cubic curves that are the B-spline.
GRbspdraw Draws a B-spline.
GRbsptocub Converts one 4-pt cubic B-spline to coefficients.
GRcubdraw Draws a cubic curve.
GRcubprecision Specifies how precisely to draw the cubic curve.
GRcubpts Gets the points on a cubic curve.
GRcubsize Gets number of points needed for cubic curve.
GRcubtobez Converts cubic curve coefficients to cubic Bezier.

GRbezsplit

GRcurve functions GR Routines

Splits a cubic Bezier curve in half.

void
GRbezsplit (

DV_POINT inbez[4],
DV_POINT outbez0[4],
DV_POINT outbez1[4])

GRbezsplit splits a cubic Bezier curve, defined by the four control points inbez[4], in half, generating two smaller
Bezier curves with control points outbez0[4] and outbez1[4].

GRbeztocub

GRcurve functions GR Routines

Converts cubic Bezier to coefficients for cubic curve.

void
GRbeztocub (

DV_POINT bez[4],
DV_POINT a[4])

GRbeztocub converts a cubic Bezier curve defined by the four control points bez[4] to the cubic polynomial form
defined by the coefficients a[4]. These coefficients correspond to the polynomial equation shown above. These
coefficients are calculated with the following formulae:

a[0] = - bez[0] + 3 * bez[1] -3 * bez[2] + bez[3];
a[1] = 3 * bez[0] - 6 * bez[1] +3 * bez[2];
a[2] = - 3 * bez[0] + 3 * bez[1];
a[3] = bez[0];

GRbspcubics

GRcurve functions GR Routines

Gets the cubic curves that are the B-spline.

int
GRbspcubics (

DV_POINT bsp[],
int numcps,
int end_conditions,
DV_POINT a[][4])

GRbspcubics converts a uniform cubic B-spline curve defined by the control points bsp[numcps] to an array of
cubic curves a[numcps][4]. The B-spline can have one of the following three end_conditions:

OPEN_ENDS Open, with the curve going through the two
end points of the control polygon.

CLOSED_ENDS Closed, with the curve forming a loop like
the snake eating its own tail.

FLOATING_ENDS Floating, with the end points of the curve not
attached to the control polygon.

The B-spline must have at least four control points. GRbspcubics returns the number of cubic curves actually
created. The number varies depending on the end conditions, but there are never more than numcps.

GRbspdraw

GRcurve functions GR Routines

Draws a B-spline.

int
GRbspdraw (

DV_POINT bsp[],
int numcps,
int end_conditions,
int linepattern,
int linewidth)

GRbspdraw draws the B-spline defined by the control points bsp[numcps] and end_conditions, using a series of
vectors with the linepattern and linewidth attributes. The end conditions are described above. The degree of
precision of the vector approximation is controlled by GRcubprecision, as described below.

GRbsptocub

GRcurve functions GR Routines

Converts one 4-pt cubic B-spline to coefficients.

void
GRbsptocub (

DV_POINT bsp[4],
DV_POINT a[4])

GRbsptocub converts a 4-point B-spline, bsp[4], to its cubic polynomial representation, a[4]. These coefficients are
calculated with the following formulae:

a[0] = (-bsp[0] + 3 * bsp[1] - 3 * bsp[2] + bsp[3])/6;
a[1] = (3 * bsp[0] - 6 * bsp[1] + 3 * bsp[2])/6;
a[2] = (-3 * bsp[0] + 3 * bsp[2])/6;
a[3] = (bsp[0] + 4 * bsp[1] + bsp[2])/6;

GRcubdraw

GRcurve functions GR Routines

Draws a cubic curve.

void
GRcubdraw (

DV_POINT a[4],
int linepattern,
int linewidth)

GRcubdraw draws a cubic curve, described by the coefficients a[4], using a series of vectors, and drawn with the
attributes linepattern and linewidth. The degree of precision of the vector approximation is controlled by
GRcubprecision, described below.

GRcubprecision

GRcurve functions GR Routines

Specifies how precisely to draw the cubic curve.

int
GRcubprecision (

int max_deviation)

GRcubprecision specifies the precision for use in approximating a cubic curve with straight lines. The precision
value is the maximum deviation allowed between the drawn curve and the ideal curve. Therefore, a value of zero for
max_deviation gives the maximum precision and larger values give less precision. Returns the old precision value. A
negative precision value returns the current precision with no change.

GRcubpts

GRcurve functions GR Routines

Gets the points on a cubic curve.

int
GRcubpts (

DV_POINT a[4],
DV_POINT ptbuf[],
int bufsize)

GRcubpts converts a cubic polynomial curve defined by the coefficients a[4] into a vector approximation,
ptbuf[bufsize]. Returns the number of points added to the points buffer.

GRcubsize

GRcurve functions GR Routines

Gets number of points needed for cubic curve.

int
GRcubsize (

DV_POINT a[4])

GRcubsize returns the estimated maximum number of points that would be required to represent a specified cubic
curve at a given level of precision. Representing the curve might actually require fewer points. See also
GRcubprecision.

GRcubtobez

GRcurve functions GR Routines

Converts cubic curve coefficients to cubic Bezier.

void
GRcubtobez (

DV_POINT a[4],
DV_POINT bez[4])

GRcubtobez is the inverse of GRbeztocub; it converts the cubic curve defined by the coefficients a[4] into the
equivalent Bezier representation defined by the control points bez[4]. These control points are calculated with the
following formulae:

bez[0] = a[3];
bez[1] = a[2]/3 + a[3];
bez[2] = a[1]/3 + 2*a[2]/3 + a[3];
bez[3] = a[0] + a[1] + a[2] + a[3].

GRdevice
GRdevice Functions GR Routines

Routines for device setup and management.

Since these routines are device-dependent, not all device drivers support them. They return DV_SUCCESS when
they are implemented successfully, and DV_FAILURE when they cannot be implemented or when passed an invalid
flag for the current driver.

See Also
GRcolor, GRinquiry

Examples
Drawing to the device. The following code fragment displays a filled square whose color corresponds to the red,
green, and blue values entered by the user.

static DV_POINT llp = { 200, 200 }, urp = { 400, 400 };
int red, green, blue;
int color_index;

/* Prompt user for input. */
printf ("Enter red, green and blue values. ^D to quit. \n");
printf ("Press <RETURN> after each. \n");
printf ("Enter a CTL-D to quit. \n");

while (scanf ("%d %d %d", &red, &green, &blue) != EOF)
{

GRrgbtoindex (red, green, blue, &color_index); /* index. */
GRcolor (color_index); /* Sets foreground color. */
GRf_rectangle (&llp, &urp); /* Draws a filled rectangle. */
GRflush();

}
GRindextorgb (color_index, &red, &green, &blue);
printf ("The closest color index, %d, \n", color index);
printf ("Corresponds to red=%d, green=%d, blue=%d \n", red, green, blue);

Erasing the device. The following code fragment erases the device to an amber background color. Any displays
previously left on the device no longer appear.

int color_index;

/* Erase screen to an amber background. */
GRrgbtoindex (200, 90, 0, &color_index); /* specify amber */
GRbackcolor (color_index);
GRerase(); /* erase screen */

Planemasking. The following code fragment draws a red circle on one plane and a green square on the other, with a
black background, and with squares having priority over circles. GRmaskplanes then erases the green square and the
whole circle becomes visible, undamaged by the erase. The device is assumed to have only 2 planes.

/* The color table has been set up as follows */
/* color #0: black */
/* color #1: red */
/* color #2: green */
/* color #3: green */
DV_POINT p1 = { 100,100 }, p2 = { 200,200 };
LONG oldmask;

/* Set color to all bits ON.
/* The actual color is the result of ANDing with the mask */
GRcolor (3);

/* Draw the circle */
oldmask = GRmaskplanes ((LONG)1);
GRf_circle (&p1, 100);

/* Draw the square */
GRmaskplanes (2);
GRf_rectangle (&p1, &p2);

/* Erase the square */
GRcolor (0);
GRf_rectangle (&p1, &p2);

/* Restore the mask */
GRmaskplanes (oldmask);

Planemasking under X. The following code fragment shows how set up planemasking in a color table and X
colormap simultaneously. The color table has 128 entries. The lowest 64 entries are shades of red. The upper 64
entries constitute the overlay plane, and are all a single shade of blue. The colormap has 256 entries, so it can
accommodate the colors for other applications.

unsigned long pixels[256], planes[256];
COLOR_TABLE clut;
XColor x_colors[256];

XAllocColorCells (display, colormap, False, planes, 1, pixels, 64);

clut.ctsize = 128;

/* 64 shades of red in the lower layer. To save space, setting the other color components isn’t shown. */
for (i = 0; i < 64; i++)

{
clut.ct[i].red = i; /* set DV color */

/* Set the X pixels. */
x_colors[i].pixel = pixel[i];
x_colors[i].red = clut.ct[i].red << 8; /* X uses short */
x_colors[i].flags = DoRed | DoGreen | DoBlue;
}

/* Set up the blue overly plane. */
for (i = 64; i < 128; i++)

{
clut.ct[i].blue = 255; /* set DV color */

/* Set the X pixels. */
x_colors[i].pixel = planes[0] | pixel[i-64];
x_colors[i].blue = clut.ct[i].blue << 8; /* X uses short */
x_colors[i].flags = DoRed | DoGreen | DoBlue;
}

/* Set the DV color table. */
GRs_color_table (&clut);

/* Set the X colormap. */
XStoreColors (display, colormap, x_colors, 128);

/* To draw in the lowest layer: */
GRmaskplanes (AllPlanes); /* AllPlanes is defined by X */
GRcolor (3); /* or whatever index in [0,63] has color you want */

/* To draw in the overlay plane (higher layer) */
GRmaskplanes (planes[0]);
GRcolor (64); /* ANY color in [64,127]: they all come out blue anyway */

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRdevice Functions
GRclose Closes a graphics device.
GRdraw_background Repairs all or part of the device by drawing with the background color.
GRerase Erases the device by drawing with the background color.
GRflush Flushes display buffers.
GRget Gets information about parameters from a driver.
GRg_viewport Gets viewport boundaries.
GRmaskplanes Sets the write mask for the device.
GRopen Opens a graphics device.
GRopen_set Opens a device and returns the device number.
GRreset Resets all internal variables of the driver to the current device attributes.
GRselect Selects the current device.
GRset Resets device attributes.
GRviewport Defines a drawing viewport.

GRclose

GRdevice functions GR Routines

Closes a graphics device.

BOOLPARAM
GRclose (

int dev_num)

GRclose closes the graphics device specified by dev_num.

GRdraw_background

GRdevice functions GR Routines

Repairs all or part of the device by drawing with the background color.

BOOLPARAM
GRdraw_background (

RECTANGLE *svp)

GRdraw_background draws over the portion of the display device specified by svp using the background color. This
has the effect of erasing the specified region. If svp is NULL, this routine is equivalent to GRerase. If svp is not
NULL and a viewport has been set using GRviewport, erases the intersection of svp and the viewport. The current
position (CP) is not changed by this routine.

GRerase

GRdevice functions GR Routines

Erases the device by drawing with the background color.

BOOLPARAM
GRerase (void)

GRerase erases by drawing all pixels in the current device in the background color. The device can be erased to any
color in the color table. The background color is set by GRbackcolor. If a viewport has been set using GRviewport,
erases only the viewport. The current position (CP) is not changed by this routine.

GRflush

GRdevice functions GR Routines

Flushes display buffers.

BOOLPARAM
GRflush (void)

GRflush flushes any pending graphics instructions from the internal display buffers of all selected devices.

GRget

GRdevice functions GR Routines

Attribute Flags
Window System Data Structures
DataViews Pre- Defined Cursors

MS Windows Specific DataFlags
X11-Specific Data Stuctures

Gets information about parameters from a driver.

BOOLPARAM GRget (
ULONG flag, <type> value,
ULONG flag, <type> value,
...,

V_END_OF_LIST)

GRget gets information about the parameters, or attributes, of the current device. These attributes are device-
dependent and may not be supported on all devices. Attributes include the input file descriptor, window id, cursor,
window dimensions. Attributes are specified using zero-terminated parameter lists of attribute-value pairs. Each pair
of parameters starts with an attribute flag which specifies the particular attribute of the device being queried. The
second argument is the address of a variable in which to return the value of the attribute. The list must terminate
with V_END_OF_LIST or 0.

For example, to get the dimensions of a window specified in pixels, you can call:
GRget (V_WINDOW_WIDTH, &x, V_WINDOW_HEIGHT, &y, V_END_OF_LIST);

Many of the following attribute flags, defined in the include file dvGR.h, are also used by GRopen_set, GRset,
VUopendev_set, VOscOpenClutSet, VOscOpenSet, and TscOpenSet to set device attributes. Some of the flags are
used only by GRget to get information about the device attributes; some are used by the open-set functions for the
initial setup of the device and cannot be reset using GRset.

Attribute Flags Description
V_WINDOW_WIDTH Width of window in pixels. Takes an int argument. (open/set/get)
V_WINDOW_HEIGHT Height of window in pixels. Takes an int argument. (open/set/get)
V_WINDOW_NAME Title of window for window systems which have a title bar. Takes

a char * argument. (open/set/get)
V_WINDOW_X The system-dependent x coordinate position of the window’s upper

left corner. Takes an int argument. (open/set/get)
V_WINDOW_Y The system-dependent y coordinate position of the window’s upper

left corner. Takes an int argument. (open/set/get)
Determining window position involves your window system, window manager, and

specific configuration. Therefore, when using V_WINDOW_X and V_WINDOW_Y,
the value you get may not be the value you set. Because of this
system dependency, GRset should be tested in your specific
environment.

V_CLUT_DEPTH Depth of DataViews color lookup table (i.e. log2 of number of
colors). For monochrome systems, or if DataViews is in
monochrome mode, this is 1. Takes an int argument. (get)

V_RASTER_DEPTH Depth of the rasters in pixels. This is not always the same as
V_CLUT_DEPTH. For example, a device with 8 bit planes might be
running DataViews with only 128 colors. Takes an int argument.
(get)

V_DRAW_FUNCTION Drawing mode. Valid values are V_COPY (normal draw) and V_XOR
(draw by reversing bits, applicable to rubberbanding). Takes a
LONG argument. (open/set/get)

V_EVENTS_REPORTED A DataViews event mask containing all event types supported by
the current device. See GRwe_mask for the event types. Takes a
ULONG argument. (get)

Window System Data Structures:
V_INPUT_FD UNIX file descriptor on which events arrive for the current

screen. This is useful for UNIX system calls such as “select”
which activates the program when an event happens on the
window. Takes an int argument. (get)

V_WINDOW_ID Identifier or “handle” for the window maintained by the current
screen. Takes a Window argument for X11. (open/get)

V_DISPLAY The id or data structure for maintaining the network connection
for window systems with network-based display (currently only
X11). Takes a Display * argument. (open/get)

V_ICON_NAME Title of the icon for systems with an icon title bar. Takes a
char * argument. (open/set/get)

V_MOTION_COLLAPSE Collapses all successive motion notify events to a single event.
Default is YES. Takes a BOOLPARAM argument. (open/set)

V_EXPOSE_COLLAPSE Collapses all successive expose events to a single event. Default
is YES. Takes a BOOLPARAM argument. (open/set)

DataViews Pre-Defined Cursors:
If using WINEVENT polling routines, DataViews cursors must be switched explicitly.

V_ACTIVE_CURSOR Sets the DataViews active cursor, the arrow. Doesn’t take an
argument. (open/set)

V_INITIAL_CURSOR Sets the DataViews initial cursor, the DV logo. Doesn’t take an
argument. (open/set)

Queries About Capabilities of the Driver and System:

V_HAS_WINEVENTS True if device driver supports the window event routines such as
GRwe_mask, GRwe_poll, and GRwe_state. Takes a BOOLPARAM argument.
(get)

V_HAS_PLANE_MASKING True if device driver supports the plane masking. Takes a
BOOLPARAM argument. (get)

V_HAS_XOR True if device driver supports V_XOR drawing mode. Takes a
BOOLPARAM argument. (get)

V_IS_BLACK_AND_WHITE True if device driver is black-and-white (single bit plane).
Takes a BOOLPARAM argument. (get)

V_IS_WINDOW_SYSTEM True if the device driver is operating in a window system. Takes
a BOOLPARAM argument. (get)

V_NUM_FONTS The number of fonts available on the system. Takes an int
argument. (get)

Queries About the System-Specific Masks:

V_XWINDOW_MASK The X Window mask which results from combining mask and altmask.
Takes a ULONG argument. (get)

Microsoft Windows-Specific Data Flags:

These flags are also discussed in the DataViews Installation and System Administration Manual.
V_WIN32_WINDOW_HANDLE Window handle. Takes an HWND * argument. (open/get)
V_WIN32_NEWFONT Specifies the four DataViews hardware fonts. The fonts

increase in size; the smallest is associated with 1, the
largest with 4. Indices that are not set programmatically
use the fonts specified in the DV.INI file if there is one.
To maintain consistent sizes and styles, set all four fonts.
Takes two arguments: an int specifying the index and an
HFONT. (open/set)

V_WIN32_DOUBLE_BUFFER Double-buffering status of the window. Default is YES. Takes
an int argument (YES or NO). (open/set/get)

V_WIN32_ICON_NAME Identification of the icon. Takes a char * argument.
(open/set/get)

V_WIN32_XORFLAG Win32 raster-operation code for XOR objects. Default is
R2_XORPEN. Takes an int argument. For a list of valid values,
see the Win32 documentation for SetROP2. (open/set/get)

V_WIN32_IS_DV_DEVICE Returns a value >= 0 if this window is a DataViews device;
else returns -1. Takes two arguments: an HWND and an int *
for the result. (get)

V_WIN32_WINDOWPROC Gets the DataViews internal window procedure. Takes one
argument: a variable to hold the function pointer. Declare
the variable this way:
LRESULT (CALLBACK * dv_proc)(). (get)

V_WIN32_HPALETTE Handle to a logical palette. Lets you pass the Windows
equivalent of a color table. The logical palette must have
256 colors or less. Takes an HPALETTE argument.
(open/set/get)

X11-Specific Data Structures:

Some of these flags are discussed in more detail in the DataViews and the View Widget in the X Environment
Manual.
V_X_WINDOW_ID Same as V_WINDOW_ID. Takes a Window argument. (open/get)
V_X_DISPLAY Same as V_DISPLAY. Takes a Display * argument. (open/get)
V_X_DISPLAY_NAME Character string giving the name of an X11 remote display, for

opening an X11 window on a remote server. The string has the
form:

UNIX: hostname:server.screen
OpenVMS: hostname::server.screen

where hostname is the network name of the remote machine, server
is the server number and screen is the screen number on which to
display the window. These last two numbers are usually zero.
Takes a char * argument. (open/get)

V_X_APPLIC_CONTEXT The application context for the device. Ignored when widgets are
passed. Within an application, all devices use the application
context of the first device. Takes an XtAppContext argument.
(open/get)

V_X_DRAW_WIDGET The widget passed to display DataViews. Can be a form widget or a
widget of any other composite widget subclass. Takes a Widget
argument. (open/get)

V_X_CURSOR X Window system representation of the current cursor. Takes a
Cursor argument. (open/set/get)

V_X_APPLIC_CLASS The generic application class for this application. The
application class of the first device is assigned to all
subsequent devices. Takes a char * argument. (open/get)

V_X_APPLIC_NAME The specific application name for this device. Controls which set
of defaults the window reads from the resource database and X

defaults files. Takes a char * argument. (open/get)
V_X_SHELL The shell widget used by the current DataViews device. Takes a

Widget argument. (get)
V_X_ICON X Window system representation for the current icon in the X

bitmap format. Requires that you set V_X_ICON_WIDTH and
V_X_ICON_HEIGHT. Takes a char * argument. (open/set/get)

V_X_ICON_WIDTH Width of the X icon. Takes an int argument. (open/set/get)
V_X_ICON_HEIGHT Height of the X icon. Takes an int argument. (open/set/get)
V_X_ICON_X,
V_X_ICON_Y Control the x and y position of the iconified window, though the

window manager may override the settings. Each flag takes an int
argument. (open)

V_X_ICONIC Controls whether the window is drawn initially in an iconified
state. Default is NO. Takes a BOOLPARAM argument. (open)

V_X_EXPOSURE_BLOCK Controls whether the open-set routine blocks (waits for) the
expose event before returning. Applies only to the initial
expose event for internally created windows. If YES, the device
is ready for drawing when the routine returns. If NO, your
application should wait for an expose event before drawing on
the device. Default is NO. Takes a BOOLPARAM argument.
(open/set/get)

V_X_RESIZE_BLOCK Controls whether GRset blocks (waits for) the resize and expose
events before returning after an explicit resize. If YES, your
application should follow up immediately with calls to TscReset
and TscRedraw. If NO, your application should wait for resize
and expose events before drawing on the device. Default is NO.
Takes a BOOLPARAM argument. (open/set/get)

V_X_FONTSTRUCT Specifies the font corresponding to a 1-based index of fonts used
for text. The fonts increase in size; the smallest is
associated with 1, the largest with 4. Indices that are not set
programmatically use the fonts specified in resource files, or
the DVfonts file if there is one. To maintain consistent sizes
and styles, set all four indices. Takes two arguments: an int
argument specifying the index and an XFontStruct *. For example:

GRset (V_X_FONTSTRUCT, 1,
small_fontstr_ptr ...

(open/set/get)
V_X_DOUBLE_BUFFER If YES, graphics are written to an off-screen pixmap which is

copied to the screen whenever GRflush is called. Reduces flicker
but may slow down drawing speed. Default is NO. Takes a
BOOLPARAM argument. (open/set/get) If you are using double
buffering with the OPEN LOOK server, you should also set
V_X_RAS_SYNC to YES. (open/set/get)

V_X_RAS_SYNC If YES, forces an XSync call after every raster drawing. Ensures
that all raster draws occur when many are done in rapid
succession. Default is NO. Takes a BOOLPARAM argument.
(open/set/get)

V_X_POLY_HINT Specifies the shape of polygons so the X driver can optimize its
performance. If all polygons in the application are non-self-
intersecting, specify Nonconvex to achieve faster drawing. If
all polygons are both non-self-intersecting and convex, specify
Convex for even faster drawing. Default is Complex. Takes an int
argument. (open/set/get)

V_X_IMAGE_STRING If YES, text is drawn on a filled rectangle drawn in the
background color. If NO, the text is drawn directly on top of
the existing graphics. Default is YES. Takes a BOOLPARAM
argument. (open/set/get)

V_X_DASH_STYLE Specifies how gaps in a dashed line are drawn. Valid values are:
LineOnOffDash (gaps are not drawn, so the underlying graphics are
visible) or LineDoubleDash (the gaps are drawn using the current
background color). Default is LineOnOffDash. Takes an int argument.
(open/set/get)

V_X_GC The graphics context used for drawing. Use XChangeGC with caution
since changes in the GC can adversely affect DataViews graphics.
The following fields of the GC might be overwritten immediately:
plane_mask, foreground, background, line_width, line_style, clip_x_origin,
clip_y_origin, clip_mask, dash_offset, and dashes. Takes a GC argument.
(get)

V_X_COLORMAP The X colormap for the device. Lets you supply a shared colormap
to avoid color swapping problems. For more information, see the
discussion after the flags. Takes a Colormap argument.
(open/set/get)

V_X_PIXELS Array of X pixels corresponding to the indices in the color table.
Forces use of these pixels, taking precedence over any other
method for setting colors. For more information, see the
discussion after the flags. Takes two arguments: an int argument
specifying the number of pixels and an unsigned long[]. For example:

GRset (V_X_PIXELS, 128, pixels ... (open/set/get)
V_X_PLANES Array of X plane masks corresponding to the color planes of the

pixels. You must supply these masks if you are planemasking with
pixels supplied using V_X_PIXELS. For more information, see the
discussion after the flags. Takes two arguments: an int argument
specifying the number of masks and an unsigned long[]. For example:

GRset (V_X_PLANES, 7, masks ... (open/set/get)

V_X_COLORMAP, V_X_PIXELS, and V_X_PLANES give more control over the X structures that the X driver uses.
In general, you don’t have to pass the X colormap, pixels, or plane masks to DataViews. Instead, the X driver makes
X calls to allocate the RGB values based on the DataViews color table. If it cannot allocate all the colors, it maps the
additional colors in the color table to the closest color in the colormap. The colormap is private if you specify the :p
or :nd device name option; otherwise the default colormap is used.

V_X_COLORMAP lets you supply a shared colormap for the DataViews display device. This lets you avoid the
swapping encountered when using private colormaps for different applications running at the same time. Using the
V_X_COLORMAP flag ensures only the use of the same colormap; it does not ensure that DataViews will use the
colors you want within the colormap. When DataViews receives the colormap, it tries to allocate the colors it needs
(up to 128 colors) using any free cells remaining in the colormap. If it cannot allocate all the colors it needs, it finds
the best match among the existing colors. For the best color match, you should supply a colormap with an adequate
number of free color cells. A colormap with few free cells may result in poor color matches for your view. For
example, the colormap may not contain any yellow, so a yellow object may be drawn in the nearest green instead.

When you do not want DataViews to allocate new colors, but instead want it to use certain colors already allocated
in the colormap, you should use the V_X_COLORMAP flag, but should also use the V_X_PIXELS flag, which lets
you specify the exact X pixels from the colormap. The following code fragment shows how to pass the pixels using
V_X_PIXELS:

unsigned long pixels[128];

/* User-defined function that determines which pixels to use. */
pixel[0] = AllocatePixelFromColormap (colormap);
...
GRset (V_X_PIXELS, 128, pixels, V_END_OF_LIST);

When you use V_X_PIXELS, DataViews uses the pixels you supply as though they were in the DataViews color
table. For example, any place that it would use color[1] from the DataViews color table, it will use pixel[1] from the
array you supply. Therefore, it is your responsibility to supply pixels that are a good match to the colors in the color
table, which in turn should be a good match for the colors requested in your view. You must maintain the
correspondence between the RGB values of the pixels and the RGB values in the color table. For the best results,
create a color table with exactly the same RGB values as the pixels in the array, and pass this color table when you
open the device. If you later change the RGB values of pixels, you must also change the RGB values in the color
table.

The correspondence is important DataViews uses both the RGB values of the pixels and RGB values in the color
table, but it uses them for different functions. The RGB values of the pixels determine the drawing colors. The RGB
values in the color table are used during view loading: the colors in the view are mapped to the closest RGB value in
the color table. If correspondence between the pixels and color table is not maintained, views may display wildly
incorrect colors instead of closely matched colors.

Note that you normally use these flags when you first open the device so that they will be in effect before you draw
any graphics. Anytime you use V_X_COLORMAP, V_X_PIXELS, and V_X_PLANES, you can reset the internal
structures they control only by using these flags again. Calls to GRs_color_table, or other routines that normally
would cause the X driver to modify these X structures, no longer have that effect.

These flags also let you do planemasking with a shared colormap or the default colormap. You can use either of two
methods. For the simpler method, use the following call to set up contiguous planes and specify a color map:

TscOpenSet ("x:p", "planemask.clut", V_X_COLORMAP, DefaultColormap (display,
screen), ...)

With this method, as with all planemasking in DataViews, it is your responsibility to set up the color table correctly
and set the write mask using TdpMaskPlanes or GRmaskplanes. However, the X driver makes the calls that set up
the colormap for planemasking.

If you have set up your own colormap for planemasking, perhaps because another application is also using
planemasking, these additional steps are required:

Allocate the colors using XAllocColorCells. This returns the pixels and plane masks required for TscOpenSet or
GRset.

Open the DataViews device with the :p option for contiguous planes and pass the colormap, pixels, and planes:
unsigned long pix_arg[npixels];
unsigned long plane_arg[npixels];

screen = TscOpenSet ("x:p", "planemask.clut",
V_X_COLORMAP, (Colormap)cmap_arg,
V_X_PIXELS, npixels, pix_arg,
V_X_PLANES, nplanes, plane_arg, ...)

GRg_viewport

GRdevice functions GR Routines

Gets viewport boundaries.

BOOLPARAM
GRg_viewport (

DV_POINT *llp,
DV_POINT *urp)

GRg_viewport gets the current viewport boundaries. This subroutine call is not added to the log file.

GRmaskplanes

GRdevice functions GR Routines

Sets the write mask for the device.

LONG
GRmaskplanes (

LONG mask)

GRmaskplanes sets the write mask for the device. For example, if the device has eight planes (256 colors), this
routine allows selection of any subset of those eight planes for writing. Any graphics primitives (lines, circles, etc.)
drawn after a call to GRmaskplanes use a bit-wise AND of the current color and mask to determine their drawing
color.

The allowed ranges for mask depend on the number of display planes. mask must be in the range [1,n-1] (inclusive),
where n is the number of colors supported by the device.

GRmaskplanes is not supported on all devices. The routine also requires some care in setting up the color table, so
that when a zero is written in the higher level planes, it doesn’t obscure graphics in the lower level planes.

Returns the old mask value. If mask is NULL, returns the current mask value without changing the mask. If the
device doesn’t support masked writes, the routine always returns NULL.

For examples showing how to set up a color table and draw when planemasking, see the Examples section of this
module.

GRopen

GRdevice functions GR Routines

Opens a graphics device.

BOOLPARAM
GRopen (

char dev_name[],
int *dev_num)

GRopen opens the graphics device specified by dev_name for I/O. dev_name is a character string that names the
device, and dev_num is the user-specified location in which the device number is placed. The device number is used
to refer to the device in GRclose and GRselect. Note that opening a device that is already open has no effect on the
device: GRopen simply sets the device number. Valid device names for your system are listed in the READ_ME file
in the DataViews home directory.

GRopen_set

GRdevice functions GR Routines

Opens a device and returns the device number.

BOOLPARAM
GRopen_set (

char *dev_name,
int *dev_num,

ULONG flag, <type> value,
ULONG flag, <type> value,
...,

V_END_OF_LIST)

GRopen_set opens a new device, dev_name, and sets the device attributes. The routine returns the device number in
dev_num. The device attributes are set using a variable length argument list of attribute/value pairs. Each pair of
parameters starts with an attribute flag which specifies the particular attribute of the device to be set. The second
argument sets the value of the attribute. The list must terminate with V_END_OF_LIST or 0.

Examples of attributes that can be set are window width and height, window icon, and for externally created
windows, the window id. The attributes are specified as integer constants flags; see the description of GRget for the
list of the flags and the attributes they set. These flags, defined in the #include file dvGR.h, are also used by GRset,
VUopendev_set, TscOpenSet, VOscOpenClutSet and VOscOpenSet.

The following code opens a DataViews device with the dimensions 800x600 pixels, with an upper left position of
(100, 100) relative to the screen origin, on an X11 Window system:

GRopen_set ("X1", &devnum, V_WINDOW_X, 100, V_WINDOW_Y, 100, V_WINDOW_WIDTH, 800,
V_WINDOW_HEIGHT, 600, V_END_OF_LIST);

Not all attribute flags work on all DataViews drivers. These attributes are device-dependent and can only be set on
certain devices.

To set the color table on the device, select the device using GRselect, then call GRs_color_table.

GRreset

GRdevice functions GR Routines

Resets all internal variables of the driver to the current device attributes.

BOOLPARAM
GRreset (void)

GRreset resets DataViews to reflect the current attributes of the device. The most important of these attributes are
the screen dimensions for the windows. Note that this routine is not implemented for terminals that do not let you
change window size.

GRselect

GRdevice functions GR Routines

Selects the current device.

BOOLPARAM
GRselect (

int dev_num)

GRselect selects the device specified by dev_num and defines it as the current device.

GRset

GRdevice functions GR Routines

Resets device attributes.

BOOLPARAM
GRset (

ULONG flag, <type> value,
ULONG flag, <type> value,
...,

V_END_OF_LIST)

GRset resets attributes of the current device using a variable-length list of attribute/value parameter pairs. For an
example of setting device attributes, see GRopen_set. For descriptions of the attributes that can be set, see GRget.

GRviewport

GRdevice functions GR Routines

Defines a drawing viewport.

BOOLPARAM
GRviewport (

DV_POINT *llp,
DV_POINT *urp;

GRviewport defines the drawing viewport. Objects are clipped to the viewport boundaries. Calling this with a llp
setting of NULL sets the viewport to the full screen.

GRdraw
GRdraw Functions GR Routines

Routines for drawing and positioning graphical objects.

CP is the current position. Objects are drawn using the current foreground color as set by GRcolor.

All routines return DV_SUCCESS or DV_FAILURE.

See Also
GRcolor and GRcur_point in GRinquiry

Examples
Drawing circles. The following code fragment draws a circle near the center of the screen with a smaller filled
circle inside it:

DV_POINT p;

p.x = 300; /* Position center of circle near */
p.y = 300; /* center of screen. */
GRcircle (&p, 100); /* Draw a circle of radius 100. */
GRf_circle (&p, 50); /* Draw a filled circle of radius 50. */

Drawing concatenated vectors. The following code fragment draws a series of concatenated vectors which form a
triangle. The first and fourth elements of the array represent the same point on the screen, thereby closing the
triangle.

DV_POINT pt_list[4] = {{ 200, 200 },{ 300,300},
 { 300, 200 },{ 200, 200 }};

GRconcat_vector (pt_list, 4);

Drawing polygons. The following code fragment draws a quadrilateral on the screen with a boundary in a different
color:

static DV_POINT pt_list[] =
{{ 250, 150 },{ 300, 400 },{ 400, 300 },{ 350, 150 }};

GRcolor (1);
GRf_polygon (pt_list, 4);
GRcolor (2);
GRpolygon (pt_list, 4);

Drawing rectangles. The following code fragment draws a filled rectangle in one color and its boundary in a
different color:

static DV_POINT llp = { 200, 200 },
urp = { 500, 400 };

GRcolor (1);
GRf_rectangle (&llp, &urp);
GRcolor (2);
GRrectangle (&llp, &urp);

Drawing sectors. The following code fragment draws a filled sector which sweeps out a quarter of a circle. The
negative value of delta indicates that the sector fills the fourth quadrant of the circle. It then draws the arc edge in a
different color.

static DV_POINT p = { 300, 200 };

GRcolor (1);
GRf_sector (p, 100, 0, -90);
GRcolor (2);
GRsector (&p, 100, 0, -90);

Drawing vectors. The following code fragment draws two line segments on the screen. The CP is moved after
drawing the first line segment so that the second one can be drawn in a different location. The first line segment is
drawn from left to right. The second is drawn from right to left.

DV_POINT p;

p.x = 150; /* Declare starting location of first line segment. */
GRmove (&p); /* Move CP to that location. */
p.x += 200; /* Declare end location. */
GRvector (&p); /* Draw first line segment from left to right. */
p.y += 100;
GRmove (&p); /* Move CP up 100 units. */
p.x -= 200; /* Declare end location of second line segment. */
GRvector (&p); /* Draw second line segment from right to left. */

The following code fragment draws a vector from the CP to a point specified by end_pt:
DV_POINT p, end_pt;

p.x = 200;
p.y = 200;
GRmove (&p); /* Reposition CP. */
end_pt.x = 450; /* Set end point. */
end_pt.y = 400;
GRvector (&end_pt); /* Draw vector from CP to end point. */

Equivalently, the GRmove and GRvector calls could be replaced by a single call to GR_move_and_vector at the end
of the code fragment:

GRmove_and_vector (&p, &end_pt);

Drawing different line types. The following code fragment draws 16 different line types:
DV_POINT startp, endp; /* startp represents CP */
int type;

startp.x = 150;
startp.y = 100;
endp.x = 450;
endp.y = 100;

/* Reposition CP for each line type drawn */
for (type = 1;

type <= 7;
type++, startp.y += 15, endp.y += 15)

{

/* Move CP to new starting position. */
GRmove (&startp);
GRline (&endp, type, 1);

}

for (type = 8;
type <= 16;
type++, startp.y += 15, endp.y += 15)

GRmv_and_line (&startp, &endp, type, 1);

Drawing polar vectors. The following code fragment draws a vector based on a polar coordinate system. After the

vector is drawn, a dot is drawn at the origin of the coordinate system.
DV_POINT center, startp, endp;
PLR_POINT p0, p1;

p0.radius = 100;
p0.angle = 100;
p1.radius = 250;
p1.angle = 270;
center.x = 300; /* Coordinates of center of circle. */
center.y = 250;

/* Draw polar coordinate vector */
GRplrvector (¢er, &p0, &p1);
GRf_rectangle (¢er, ¢er);

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRdraw Functions
GRcircle Draws an unfilled circle.
GRconcat_line Draws concatenated patterned lines.
GRconcat_vector Draws a series of concatenated vectors.
GRf_circle Draws a filled circle.
GRf_polygon Draws a filled polygon.
GRf_rectangle Draws a filled rectangle.
GRf_sector Draws a filled arc sector.
GRline Draws a line to a point.
GRmove Moves the current position (CP).
GRmove_and_vector Draws a vector between two points.
GRmv_and_line Draws a line between two points.
GRplrvector Draws a linear curve in a polar coordinate system.
GRpolygon Draws an unfilled polygon.
GRrectangle Draws an unfilled rectangle.
GRsector Draws an unfilled arc sector.
GRvector Draws a vector to a point.

GRcircle

GRdraw functions GR Routines

Draws an unfilled circle.

BOOLPARAM
GRcircle (

DV_POINT *center,
int radius)

Draws an unfilled circle of radius, radius, around a central point, center. center must be a pointer to the desired
location, in screen coordinates, of the center of the circle. radius must be a positive integer representing the distance
in screen coordinates from center to the edge of the circle. The CP is set to the center of the circle.

GRconcat_line

GRdraw functions GR Routines

Draws concatenated patterned lines.

BOOLPARAM
GRconcat_line (

DV_POINT pt_list[],
int numpts,
int type,
int width)

GRconcat_line draws concatenated lines on the selected device. Draws patterned lines, starting with the first point in
the array pt_list, and ending with the last point in pt_list. The number of points in the array is specified by numpts.
The CP is set to the last point in pt_list. type and width indicate the pattern and width of the concatenated lines.

GRconcat_vector

GRdraw functions GR Routines

Draws a series of concatenated vectors.

BOOLPARAM
GRconcat_vector (

DV_POINT pt_list[],
int num)

Draws a series of concatenated vectors starting at the first point in the points array, pt_list. The number of points in
the array is specified by num. The points must be in screen coordinates. The CP is set to the position represented by
the last element of pt_list.

GRf_circle

GRdraw functions GR Routines

Draws a filled circle.

BOOLPARAM
GRf_circle (

DV_POINT *center,
int radius)

Draws a filled circle of radius, radius, around a central point, center. center must be a pointer to the desired location,
in screen coordinates, of the center of the circle. radius must be a positive integer representing the distance in screen
coordinates from center to the edge of the circle. The CP is set to the center of the circle.

GRf_polygon

GRdraw functions GR Routines

Draws a filled polygon.

BOOLPARAM
GRf_polygon (

DV_POINT pt_list[],
int num)

GRf_polygon draws a filled polygon with num vertices, starting at the first point in the points array, pt_list, and
connecting the last point to the first point.

Each value in pt_list must be a point in screen coordinates. These points represent the locations of the vertices of the
polygon. num must be the number of elements in the array, pt_list. The CP is set to the first point in the polygon,
which is represented by the value in the first element of the array, pt_list.

GRf_rectangle

GRdraw functions GR Routines

Draws a filled rectangle.

BOOLPARAM
GRf_rectangle (

DV_POINT *p1,
DV_POINT *p2)

GRf_rectangle draws a filled rectangle with a lower left corner specified by p1 and an upper right corner specified
by p2. p1 and p2 must be pointers to points containing screen coordinates. The CP is set to the lower left point, p1.

GRf_sector

GRdraw functions GR Routines

Draws filled arc sector.

BOOLPARAM
GRf_sector (

DV_POINT *center,
int radius,
int start,
int delta)

GRf_sector draws a filled arc sector of a circle, resembling a pie slice.

center and radius define the circle, in screen coordinates, in which the arc is embedded. The CP is set to the location
of center.

start specifies the start angle of the arc in degrees counter-clockwise from the horizontal. The allowed range for start
is [0,359].

delta specifies the number of degrees subtended by the arc. The allowed range for delta is [-359,+359]. A positive
value for delta creates the sector in a counter-clockwise direction. A negative value creates the sector in a clockwise
direction.

GRline

GRdraw functions GR Routines

Draws a line to a point.

BOOLPARAM
GRline (

DV_POINT *p,
int type,
int width)

GRline uses a line pattern specified by type to draw a line segment width pixels wide from the CP, which can be set
using GRmove, to a point, p.

GRmove

GRdraw functions GR Routines

Moves the current position (CP).

BOOLPARAM
GRmove (

DV_POINT *p)

GRmove moves the CP to the point p, in screen coordinates, without drawing.

GRmove_and_vector

GRdraw functions GR Routines

Draws a vector between two points.

BOOLPARAM
GRmove_and_vector (

DV_POINT *p1,
DV_POINT *p2)

GRmove_and_vector moves the CP and draws a vector from p1 to p2. Points must be specified in screen
coordinates. After vector is drawn, the CP is set to the end point.

GRmv_and_line

GRdraw functions GR Routines

Draws a line between two points.

BOOLPARAM
GRmv_and_line (

DV_POINT *p1,
DV_POINT *p2,
int type,
int width)

GRmv_and_line uses a line pattern specified by type to draw a line segment width pixels wide from point p1 to point
p2. The CP is set to the end of the line segment.

Both width and type should be positive. The interpretation of type is device-dependent. Line types 0 and 1 are
always solid. There are usually no more than 16 line types.

GRplrvector

GRdraw functions GR Routines

Draws a linear curve in a polar coordinate system.

BOOLPARAM
GRplrvector (

DV_POINT *center,
PLR_POINT *p0,
PLR_POINT *p1)

GRplrvector draws a linear curve in a polar coordinate system. The curve equation has this form:
r = m * theta + b

where theta is the angle and r is the radius. The routine uses this equation to draw the curve in polar coordinates
around the point specified by center, given a start angle and radius, p0, and an end angle and radius, p1. The curve
connects the two points (p0 and p1) in such a way that the radius varies linearly with the angle. The curve is drawn
counter-clockwise from the start angle specified by p0, to the end angle specified by p1. center defines the center of
the polar coordinate system in screen coordinates.

The angle portion of the PLR_POINT structure is specified in degrees. The radius portion of the PLR_POINT
structure must be in screen coordinates. The curve is drawn in a counter-clockwise direction regardless of the signs
of the angles. The CP is set to the position corresponding to p1, the end point of the curve.

GRpolygon

GRdraw functions GR Routines

Draws an unfilled polygon.

BOOLPARAM
GRpolygon (

DV_POINT pt_list[],
int num)

GRpolygon draws an unfilled polygon with num vertices, starting at the first point in the points array, pt_list, and
connecting the last point to the first point.

Each value in pt_list must be a point in screen coordinates. These points represent the locations of the vertices of the
polygon. num must be the number of elements in the array, pt_list. The CP is set to the first point in the polygon,
which is represented by the value in the first element of the array, pt_list.

GRrectangle

GRdraw functions GR Routines

Draws an unfilled rectangle.

BOOLPARAM
GRrectangle (

DV_POINT *p1,
DV_POINT *p2)

GRrectangle draws an unfilled rectangle with a lower left corner specified by p1 and an upper right corner specified
by p2. p1 and p2 must be pointers to points containing screen coordinates. The CP is set to the lower left point, p1.

GRsector

GRdraw functions GR Routines

Draws unfilled arc sector.

BOOLPARAM
GRsector (

DV_POINT *center,
int radius,
int start,
int delta)

GRsector draws an unfilled arc sector of a circle.

center and radius define the circle, in screen coordinates, in which the arc is embedded. The CP is set to the end
point of the sector.

start specifies the start angle of the arc in degrees counter-clockwise from the horizontal. The allowed range for start
is [0,359].

delta specifies the number of degrees subtended by the arc. The allowed range for delta is [-359,+359]. A positive
value for delta creates the sector in a counter-clockwise direction. A negative value creates the sector in a clockwise
direction.

GRvector

GRdraw functions GR Routines

Draws a vector to a point.

BOOLPARAM
GRvector (

DV_POINT *p)

GRvector draws a vector from the CP to the point, p, in screen coordinates. The CP can be set by GRmove. Points
must be specified in screen coordinates. After vector is drawn, the CP is set to the end point.

GRinquiry
GRinquiry Functions GR Routines

Routines that get information from or about the display device.

See Also
GRdevice

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRinquiry Functions
GRaspect_ratio Gets x and y pixel-count.
GRcur_point Gets the current drawing position.
GRcurrent_dev Gets the current display device number.
GRdepth Gets the number of bits per pixel.
GRdevname Gets the current display device name.
GRdevnum Gets the ordinal number of the current device.
GRisdevopen Determines if the current device is open.

Unless otherwise noted, all routines return DV_SUCCESS or DV_FAILURE.

GRaspect_ratio

GRinquiry functions GR Routines

Gets x and y pixel-count.

BOOLPARAM
GRaspect_ratio (

int *x,
int *y)

GRaspect_ratio gets the number of pixels in the horizontal direction, x, and the number of pixels in the vertical
direction, y, that can be displayed on the current device.

GRcur_point

GRinquiry functions GR Routines

Gets the current drawing position.

BOOLPARAM
GRcur_point (

DV_POINT *pt)

GRcur_point gets the current position (CP) for the graphics device. The CP is set by drawing routines such as
GRline, GRvector, and GRmove.

GRcurrent_dev

GRinquiry functions GR Routines

Gets the current display device number.

BOOLPARAM
GRcurrent_dev (

int *curr_device)

GRcurrent_dev gets the device number of the current device and returns it in curr_device.

GRdepth

GRinquiry functions GR Routines

Gets the number of bits per pixel.

BOOLPARAM
GRdepth (

int *depth)

GRdepth gets the number of bits per pixel, depth, for the screen. The maximum number of colors that can be
represented on the device is 2 to the depth power.

GRdevname

GRinquiry functions GR Routines

Gets the current display device name.

BOOLPARAM
GRdevname (

int device_ordinal,
char **device_name)

GRdevname gets the device name that corresponds to the given device number and returns it in device_name. If
there is no device with the given device number, the routine returns NO and sets the device name pointer to NULL.
Note that this routine returns a pointer to an internal name string which should not be modified.

GRdevnum

GRinquiry functions GR Routines

Gets the ordinal number of the current device.

BOOLPARAM
GRdevnum (

char *device_name,
int *device_ordinal)

GRdevnum gets the device number of the named device and returns it in device_ordinal. If there is no device with
the given name, the routine returns NO and sets the device number to -1.

GRisdevopen

GRinquiry functions GR Routines

Determines if the current device is open.

BOOLPARAM
GRisdevopen (

char *device_name)

GRisdevopen returns a Boolean value indicating if the named device has been opened yet. Returns YES if the device
is open and NO if it is not.

GRpalette
GRpalette Functions GR Routines

Routines for using the color palette.

Diagnostics
Setting the palette viewport does not affect the viewport set by GRviewport; they are different entities.

GRpalpick may set the CP to the location that was picked.

Examples
Drawing the palette. The following code fragment draws the default color palette in the specified viewport.

DV_POINT p;
RECTANGLE palette_vp;

/* Specify coordinates of color palette viewport, and draw palette. */
palette_vp.ll.x = 100;
palette_vp.ll.y = 30;
palette_vp.ur.x = 500;
palette_vp.ur.y = 450;
GRpaldraw (&palette_vp);

/* Move CP and write text starting at CP. */
p.x = 100;
p.y = 15;
GRmove (&p);
GRtext ("The color table contains the above colors.");

Picking in the palette. The following code fragment displays a color palette and an unfilled rectangle, then asks the
user to fill the rectangle with any six colors from the palette. Each color selected fills 1/6th of the rectangle. In each
iteration of the loop, the call to GRpalcrmove places the cursor in the middle of the color patch which was chosen in
the previous iteration. As the user moves the cursor, the current color selection is displayed in the echo viewport.

LONG color_index;
static RECTANGLE echovp = {{ 0, 301 },{ 300, 400 }};
static RECTANGLE palette_vp = {{ 300, 200 }, { 600,450 }};
DV_POINT llp, urp; /* lower left and upper right */
int i;

GRpaldraw (&palette_vp); /* Draw palette */

/* Draw unfilled rectangle next to palette. Prompt user for colors. */
llp.x = 0;
llp.y = 200;
urp.x = 300;
urp.y = 300;
GRrectangle (&llp, &urp);

printf ("Choose six colors from palette to fill the rectangle. \n");
printf ("Position cursor at a color in palette and press <space> \n");

for (i = 1, urp.x = 50; i < 7; i++, llp.x += 50, urp.x += 50)
{
GRpalpick (&echovp, &color_index); /* User picks a color. */
GRcolor ((int) color_index); /* Set desired foreground color. */
GRf_rectangle (&llp, &urp); /* Draw small rectangle, said color. */
GRpalcrmove (color_index); /* Position cursor at previous choice. */

GRflush(); /* Flush internal display buffers. */
}

Echoing. The following code fragment lets the user move the graphics cursor over the color palette, echoing each
color the cursor moves over in a filled circle in the lower left corner of the screen. If the cursor moves off the color
palette, the previous color appears in the circle. The program terminates when the user presses any key or mouse
button.

LONG color_index;
static RECTANGLE palette_vp = {{ 150, 200 },{ 600, 450 }};
static DV_POINT p = { 100, 100 };
int keypress = 0;

GRpaldraw (&palette_vp); /* Draw color palette. */
GRcr_open_poll(); /* Turn on graphics cursor. */

/* Let user move the graphics cursor throughout the color palette. */
/* Echo each color patch color in the filled circle. */
while ((keypress = GRpalpoll (&color_index)) == 0)

{
GRcolor (color_index); /* Reset current foreground color. */
GRf_circle (&p, 50); /* Draw filled circle with color. */

}

GRcr_close_poll(); /* Turn off graphics cursor. */

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRpalette Functions
GRpalcrmove Moves the graphics cursor to the palette color patch corresponding to the specified color.
GRpaldraw Draws the color palette for the current device in the specified palette viewport.
GRpalhas_pt Determines if the passed point is inside the drawn palette.
GRpalloc Gets the color at a given location in the palette.
GRpalpick Returns a color palette pick.
GRpalpoll Gets the color currently pointed to by the cursor, and returns any key or button that was

pressed.

Unless otherwise noted, all routines return DV_SUCCESS or DV_FAILURE.

GRpalcrmove

GRpalette functions GR Routines

Moves the graphics cursor to the palette color patch corresponding to the specified color.

BOOLPARAM
GRpalcrmove (

LONG color_index)

GRpalcrmove moves the cursor to the center of the color patch that corresponds to the specified color in
color_index. color_index must be an index into the device’s color lookup table. For example, if the color lookup
table has n indices, color_index must be in the range 0 to n-1.

Must be called after GRpaldraw, which draws the palette in which the cursor is to be placed.

GRpaldraw

GRpalette functions GR Routines

Draws the color palette for the current device in the specified palette viewport.

BOOLPARAM
GRpaldraw (

RECTANGLE *palette_vp)

GRpaldraw draws the color palette of the current device in the viewport specified by palette_vp, and initializes
variables that describe the palette’s characteristics.

Only one palette can be active at a time. Drawing a second palette supersedes all references to the initial palette,
rendering it useless.

Palette_vp must contain two points with values represented in screen coordinates. Note that the palette is adjusted
when drawn to ensure that all color boxes are the same size. See GRpalhas_pt.

GRpalhas_pt

GRpalette functions GR Routines

Determines if the passed point is inside the drawn palette.

LONG
GRpalhas_pt (

DV_POINT *pt)

GRpalhas_pt determines if the point, pt, is inside the drawn palette. When a palette is drawn using GRpaldraw, the
palette is adjusted to ensure that all color boxes are the same size. Therefore, a palette may be drawn smaller than
the requested size by a few pixels. Use this routine to determine if your pick is within the drawn palette.

Returns YES or NO.

GRpalloc

GRpalette functions GR Routines

Gets the color at a given location in the palette.

void
GRpalloc (

DV_POINT *pt,
LONG *color_index)

GRpalloc is passed the address of a point, pt, and uses color_index to return the color at the location of pt within the
palette.

GRpalpick

GRpalette functions GR Routines

Returns a color palette pick.

int
GRpalpick (

RECTANGLE *echovp,
LONG *color_index)

GRpalpick lets the user select a color from the color palette. A color can be chosen by moving the cursor to the color
patch that represents the desired color, then pressing any key or mouse button. GRpalpick waits for the key or button
press, gets the color selected in the color palette, and returns the key or button that was pressed.

If an echo viewport is used, it echoes each color the cursor moves over. After a key or button is pressed, the echo
viewport echoes only the color selected and does not change until the routine is called again. However, if the cursor
moves beyond the boundaries of the color palette, the echo viewport displays the color that corresponds to the value
of color_index at the time GRpalpick was called and echoes this color until the cursor is repositioned inside the
palette. If a key or button is pressed while the cursor is outside the palette, the echo viewport displays this original
color until the routine is called again, and the pick is not serviced. Therefore, the calling program should determine
if there is a pick to be serviced after each call to GRpalpick.

GRpaldraw must be called before GRpalpick so that the color palette can be displayed on the screen.

The use of an echo viewport is optional. If it is not needed, a NULL pointer should be passed to the routine in place
of the echovp argument. If an echo viewport is used, echovp must contain two points, in screen coordinates, which
determine the location of the echo viewport.

color_index behaves as both an entry and an exit parameter, containing the original color on entry and the new color
on exit (or the original color on exit if the cursor was outside the palette viewport when the key or button was
pressed).

Returns the key or button that was pressed.

GRpalpoll

GRpalette functions GR Routines

Gets the color currently pointed to by the cursor, and returns any key or button that was pressed.

int
GRpalpoll (

LONG *color_index)

GRpalpoll sets color_index to the color currently pointed to by the graphics cursor and returns any key or button that
was pressed.

This routine allows color selection from the color palette as drawn by GRpaldraw. However, unlike GRpalpick,
GRpalpoll does not wait for a key or button press before returning the color selected. Instead, it immediately returns
the color being pointed to by the graphics cursor.

This routine assumes that the graphics cursor is already open, which means that GRcr_open_poll must be called
before calling GRpalpoll. The graphics cursor must also be closed before the main program terminates, so
GRcr_close_poll must be called to terminate. If the graphics cursor is not on the palette when GRpalpoll is called,
color_index is set to the most recent color index.

Returns any key or button pressed; otherwise NULL.

GRraster
GRraster Functions GR Routines

Routines that handle raster operations (rasterops) to and from the display surface. Some terminals do not support
rasterops. GRrasquery lets you query the device using to determine what raster operations are supported.

Rasters let you set pixels on the display device to specific colors. They also let you take a snapshot of part of a
screen. DataViews rasters have their origin in the lower left. The origin (ll), width, and height parameters for rasters
should be specified in screen coordinates and should indicate valid positions within the window.

To create a raster, either use GRrascreate to create an empty raster or use GRrasget to create a raster that contains a
copy from the screen; don’t use both on the same raster.

GRrasgpxrp, GRrassmaskpxrp, and GRrasspxrp handle raster operations using pixreps. A pixrep is a description of a
rectangular block of pixels arranged in a flexible layout. Pixreps are explained in detail in the VUpixrep section of
the VU Routines chapter.

Unless otherwise noted, these routines return DV_SUCCESS or DV_FAILURE. DV_FAILURE can indicate either
that there was an invalid parameter or that the routine is not supported for the current device. To determine which
routines are supported, use GRrasquery.

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRraster Functions
GRrascreate Creates a new raster array.
GRrasdraw Draws a raster array.
GRrasdrawpart Draws a portion of a raster array.
GRrasfree Frees the raster array storage area.
GRrasget Gets a raster array.
GRrasgpix Gets a pixel value in a raster array.
GRrasgpxrp Fills in a pixrep to look like a raster.
GRrasmove Copies and moves a raster array.
GRrasquery Asks the selected device about rasterop capabilities.
GRrassize Gets raster size information.
GRrassmask Sets the draw mask for the raster.
GRrassmaskpxrp Sets the draw mask for the raster using a pixrep.
GRrasspix Sets a pixel value in a raster array.
GRrasspixels Sets all of the raster’s pixels at once.
GRrasspxrp Sets all of the raster’s pixels at once using a pixrep.
GRrasvalid Determines whether or not an address contains a valid raster.

GRrascreate

GRraster functions GR Routines

Creates a new raster array.

BOOLPARAM
GRrascreate (

int height,
int width,
ADDRESS *raster)

GRrascreate creates a new raster array compatible with the current device. width and height determine the size in
screen coordinates. Returns the raster pointer in raster. The newly created raster array contains random values for
the pixels. To set the pixel values, call GRrasspix. The raster must be destroyed by calling GRrasfree when it is no
longer needed. To reuse the raster, call GRrasfree before calling GRrasget.

GRrasdraw

GRraster functions GR Routines

Draws a raster array.

BOOLPARAM
GRrasdraw (

ADDRESS raster,
DV_POINT *ll)

GRrasdraw draws the raster array to the current device starting at the lower left origin, ll. ll is in screen coordinates.

GRrasdrawpart

GRraster functions GR Routines

Draws a portion of a raster array.

BOOLPARAM
GRrasdrawpart (

ADDRESS raster,
DV_POINT *ll,
RECTANGLE *portion)

GRrasdrawpart draws part of the raster array to the current device. raster is a device-dependent raster pointer and
portion is the part of the raster to draw. portion is relative to the origin of raster, which is specified by ll.

GRrasfree

GRraster functions GR Routines

Frees the raster array storage area.

BOOLPARAM
GRrasfree (

ADDRESS raster)

GRrasfree frees the storage area that was allocated for the raster array.

GRrasget

GRraster functions GR Routines

Gets a raster array.

BOOLPARAM
GRrasget (

DV_POINT *ll,
int width,
int height,
ADDRESS *raster)

GRrasget creates and gets the raster array of a viewport from the current device. The viewport is specified by the
origin, ll, and width and height. Returns the raster pointer in raster. The raster must be destroyed by calling
GRrasfree when it is no longer needed. To reuse the raster, call GRrasfree before calling GRrasget.

GRrasgpix

GRraster functions GR Routines

Gets a pixel value in a raster array.

LONG
GRrasgpix (

ADDRESS raster,
DV_POINT *point)

GRrasgpix returns the index of the color at a pixel in the raster array. On some monochrome devices, the normal
color sense of 0 = white is reversed so 0 = black.

GRrasgpxrp

GRraster functions GR Routines

Fills in a pixrep to look like a raster.

BOOLPARAM
GRrasgpxrp (

PIXREP *pixrep,
ADDRESS raster)

GRrasgpxrp allocates storage for a pixrep and fills in the pixrep to look like the raster in raster. This routine does
not affect the raster itself, but copies pixel values from the raster into the pixrep structure. This routine is usually
much faster than using GRrasgpix for all the pixels in the raster.

GRrasmove

GRraster functions GR Routines

Copies and moves a raster array.

BOOLPARAM
GRrasmove (

DV_POINT *ll,
DV_POINT *ur,
DV_POINT *dest)

GRrasmove copies the specified raster array on the current device to the position where dest is the lower left corner.

GRrasquery

GRraster functions GR Routines

Asks the selected device about rasterop capabilities.

BOOLPARAM
GRrasquery (

int question)

GRrasquery queries the current device about its rasterop capabilities. The flags, defined in dvGR.h, determine if the
corresponding routines exist in the driver. The valid flags are:

RAS_CREATE GRrascreate
RAS_DRAW GRrasdraw
RAS_DRAWPART GRrasdrawpart
RAS_GET GRrasget
RAS_GPIX GRrasgpix
RAS_GPXRP GRrasgpxrp
RAS_MOVE GRrasmove
RAS_SMASK GRrassmask
RAS_SMASKPXRP GRrassmaskpxrp
RAS_SPIX GRrasspix
RAS_SPIXELS GRrasspixels
RAS_SPXRP GRrasspxrp

If the query returns NO, the corresponding GR routine is not implemented. For example, if GRrasquery
(RAS_MOVE) returns NO, GRrasmove does not work.

GRrassize

GRraster functions GR Routines

Gets raster size information.

BOOLPARAM
GRrassize (

ADDRESS raster,
int *width,
int *height,
int *depth)

GRrassize gets information about the size of the specified raster. If a particular argument is NULL, that information
is not provided. Most devices have a fixed raster depth, so it is not necessary to specify a raster in order to determine
depth. Therefore, you can determine the depth of a raster on a device by using the following call:

GRrassize (NULL, NULL, NULL, &depth);

GRrassmask

GRraster functions GR Routines

Sets the draw mask for the raster.

BOOLPARAM
GRrassmask (

ADDRESS raster,
ADDRESS values)

GRrassmask assigns a two-dimensional draw mask to the raster using the value array, values. The values in the
raster draw mask indicate which pixels of the raster to draw. If the value is 1, the corresponding pixel in the raster is
drawn in the next call to GRrasdraw or GRrasdrawpart. Since the mask values must be 0 or 1, values must be an
array of bytes. The size of the array should correspond to the number of pixels in the raster.

GRrassmaskpxrp

GRraster functions GR Routines

Sets the draw mask for the raster using a pixrep.

BOOLPARAM
GRrassmaskpxrp (

ADDRESS raster,
PIXREP *pixrep,
COLOR_XFORM *xform)

GRrassmaskpxrp assigns a two-dimensional draw mask to the raster using pixrep. The pixrep data is scaled to the
size of the raster. The values in the draw mask indicate which pixels of the raster to draw. The pixrep must be using
indirect color. Pixels with a color index of 0 are not drawn, pixels with any other index are drawn. The color indices
in the pixrep can be transformed using an optional user-supplied xform when the raster is created. xform specifies a
color transform that changes the interpretation of the mask.

GRrasspix

GRraster functions GR Routines

Sets a pixel value in a raster array.

BOOLPARAM
GRrasspix (

ADDRESS raster,
DV_POINT *point,
LONG value)

GRrasspix sets a pixel specified by point in the raster array to a color index, value. point is specified in screen
coordinates with the origin at the lower left.

GRrasspixels

GRraster functions GR Routines

Sets all of the raster’s pixels at once.

BOOLPARAM
GRrasspixels (

ADDRESS raster,
ADDRESS values,
int value_unit)

GRrasspixels sets the raster’s pixels to the color index values in the value array, values. The size of the array should
correspond to the number of pixels in the raster. value_unit indicates the size of the individual values. If the values
are bytes, use 1 for value_unit. If the values are LONGs, use 4 for value_unit.

GRrasspxrp

GRraster functions GR Routines

Sets all of the raster’s pixels at once using a pixrep.

BOOLPARAM
GRrasspxrp (

ADDRESS raster,
PIXREP *pixrep,
COLOR_XFORM *xform)

GRrasspxrp modifies the raster to look like the pixrep by setting the raster’s pixels to the color values in the pixrep.
For pixreps using indirect color, the color indices in the pixrep can be transformed using an optional user-supplied
xform. xform specifies a color transform that changes the interpretation of the colors in the pixrep. xform is ignored
by pixreps using direct color.

The raster size may change. If the colors in the pixrep are not all available to the device, this function applies various
methods to get a close match to the pixrep.

GRrasvalid

GRraster functions GR Routines

Determines whether or not an address contains a valid raster.

BOOLPARAM
GRrasvalid (

ADDRESS raster)

GRrasvalid determines whether or not the address, raster, contains a valid raster. Returns DV_SUCCESS if raster
points to a valid raster. Otherwise returns DV_FAILURE.

GRrqpcurve
GR Functions GR Routines

Routines for calculating the points on rational quadratic parametric (rqp) curves and drawing them. Rqp curves can
represent any conic section.

These routines manipulate and draw rational quadratic parametric curve based on the form:

The coefficients are defined by 3 points and a “fullness factor”, k. If the fullness factor is 1, the curve is a section of
a parabola and the rqp representation becomes identical to the Bezier formulation. When k>1 the curve is a section
of an ellipse; when k<1 the curve is a section of a hyperbola. The curve is entirely contained in the convex hull of
the three points for parameter values t in the range [0,1]. For more information on rqp curves, see Computational
Geometry for Design and Manufacture, by I.D. Faux and M.J. Pratt.

See Also
GRcurve

Example
Given that array cp[3] contains three points in screen coordinates, the following code fragment draws a portion of
an ellipse on the screen using a precision value of 1.

float k;
k = 1.0;
GRrqpprecision(1);
GRrqpdraw (cp, &k, 0, 0);

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRrqpcurve Functions
GRrqpdraw Draws an rqp curve.
GRrqpprecision Specifies how precisely to draw the rqp curve.
GRrqppts Get the points on an rqp curve
GRrqpsize Gets number of points needed for an rqp curve
GRrqpsplit Splits an rqp curve in half.

GRrqpdraw

GRrqpcurve functions GR Routines

Draws an rqp curve.

void
GRrqpdraw (

DV_POINT cp[3],
float *k,
int linepattern,
int linewidth)

GRrqpdraw draws the portion of the rqp curve that is inside the three control points specified by cp[3]. The
parameter k is described above. The rqp curve is drawn using the attributes linepattern and linewidth. If linepattern
and linewidth are NULL, a single-width solid line is drawn.

GRrqpprecision

GRrqpcurve functions GR Routines

Specifies how precisely to draw the rqp curve.

int
GRrqpprecision (

int max_deviation)

GRrqpprecision specifies the precision for use in approximating an rqp curve with straight lines. The precision value
is the maximum deviation allowed between the drawn curve and the ideal curve. Therefore, a value of zero (0) for
max_deviation gives the maximum precision and larger values give less precision. Returns the old precision value. A
negative precision value returns the current precision with no change.

GRrqppts

GRrqpcurve functions GR Routines

Get the points on an rqp curve

int
GRrqppts (

DV_POINT cp[3],
float *k,
DV_POINT *ptbuf,
int bufsize)

GRrqppts calculates the points on the curve for the parameter in the range [0,1] given the parametric equation for a
rqp 2D curve. The points calculated are in screen coordinates. GRrqppts returns the number of points added to the
points buffer.

GRrqpsize

GRrqpcurve functions GR Routines

Gets number of points needed for an rqp curve

int
GRrqpsize (

DV_POINT cp[3],
float *k)

GRrqpsize returns the estimated maximum number of points that would be required to represent a specified rqp
curve. It may actually take fewer points. This estimates the number of points for a parabola where k=1. Representing
the curve might actually require fewer points.

GRrqpsplit

GRrqpcurve functions GR Routines

Splits an rqp curve in half.

void
GRrqpsplit (

DV_POINT incp[3],
float *ink,
DV_POINT outcp1[3],
float *outk1,
DV_POINT outcp2[3],
float *outk2)

GRrqpsplit splits an rqp curve in half. incp[3] is an array of control points for the input rqp, and ink is the address of
its fullness factor. outcp1[3] is the array of control points for the first output rqp, and outk1 is its fullness factor.
outcp2[3] is the array of control points for the second output rqp, and outk2 is its fullness factor.

GRtext
GRtext Functions GR Routines

Routines for writing text on the current device and controlling the character size. Character size is given in both the
horizontal dimension (xsize) and the vertical dimension (ysize). For most devices, xsize and ysize must be the same.

The allowed ranges for xsize and ysize are device-dependent. Usually the ranges for both arguments are about [1,4].
Larger values yield larger characters, but xsize and ysize do not translate directly to a scale factor.

Diagnostics
Character size values are not directly related to the size of the text, and produce different scaling factors for different
devices. For example, changing text size from 1 to 2 does not necessarily make the text twice as wide. Also, some
values may have no effect on the scaling factors on some devices. For example, on a particular device, 1 and 3 might
produce small and large characters respectively, but 2 might not change the size at all.

The rectangle mentioned above should not be confused with the one created by GRrectangle and GRf_rectangle.
The rectangle associated with a text string is created by GRtext and appears on the screen as a delimiter around the
height and length of the text string.

Examples
Different text sizes. The following code fragment writes two text strings of different sizes to the screen, each at a
different current position (CP).

DV_POINT p;

p.x = 10;
p.y = 200;
GRmove (&p); /* Move CP to the above position on screen. */
GRch_size (1, 1);
GRtext ("This string’s characters are of a certain width and height.");
p.y = 300;
GRmove (&p); /* Move CP to a higher position on screen. */
GRch_size (3, 3); /* Change size of characters. */
GRtext ("These characters are larger, so the string is longer.");

Clipping of text strings. The following code fragment writes two text strings to the screen. One starts at the top left
of the viewport; the other starts near the middle and is partially blocked by the viewport boundaries. This example
illustrates the importance of positioning text inside viewport boundaries:

DV_POINT llp, urp, ulp;

/* Set the viewport. */
llp.x = 200;
llp.y = 200;
urp.x = 500;
urp.y = 400;
GRviewport (&llp, &urp);

/* Reposition cursor and write text. */
ulp.x = llp.x;
ulp.y = urp.y - 10; /* Leave room at top of viewport for characters. */
textp = "This string is located at the top of viewport";
GRmove (&ulp);
GRtext (textp); /* Write text to screen. */

ulp.x = 300;
ulp.y = 300;

GRmove (&ulp);
GRtext ("Part of this string is hidden because of viewport boundaries"); /* Write

new string. */

Getting text size in screen coordinates. The following code fragment defines a string, textp, determines its size in
screen coordinates, and prints the size on the screen.

static char *textp = "This string has a certain height and width";
int xsize, ysize;
DV_POINT p;

p.x = 50;
p.y = 250;
GRmove (&p); /* move CP to location where string should start */
GRch_size (3, 3); /* create a large string */
GRtext (textp); /* write string to screen */
GRtextsize (textp, &xsize, &ysize);

/* get size of string in x- and y-coordinates */
printf ("The screen coordinates for the length and \n");
printf ("height of this string are as follows: \n");
printf ("length (xsize) = %d; height (ysize) = %d \n", xsize, ysize);

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRtext Functions
GRch_size Sets the scaling factors of characters in a text string.
GRg_ch_size Gets the current character size for a device.
GRtext Writes a string of text to the screen on the selected device.
GRtextsize Returns the size of a text string in screen coordinates.

All routines return DV_SUCCESS or DV_FAILURE.

GRch_size

GRtext functions GR Routines

Sets the scaling factors of characters in a text string.

BOOLPARAM
GRch_size (

int xsize,
int ysize)

GRch_size sets the character scaling factors for graphics text where the horizontal factor is defined by xsize and the
vertical factor is defined by ysize.

Any change in the scaling factors of a string affects all subsequent drawings of the text.

GRch_size is usually called before calling GRtext. However, using GRch_size is optional. If this routine is not used,
the scaling factors of a string are automatically set to device-dependent default values when GRtext is called.

GRg_ch_size

GRtext functions GR Routines

Gets the current character size for a device.

BOOLPARAM
GRg_ch_size (

int *xsize,
int *ysize)

GRg_ch_size gets the current x and y character scaling factors for the current device.

GRtext

GRtext functions GR Routines

Writes a string of text to the screen on the selected device.

BOOLPARAM
GRtext (

char *textp)

GRtext writes the string of text specified by textp at the current position (CP).

GRtext creates a rectangular boundary around the written text. This boundary is the size of the character height and
the text length, and acts as a backdrop for the text. The CP is located at the lower left corner of this rectangle and
moves to the lower right corner after the text string is written, so that any subsequent text is appended to the end of
the string. The rectangular area is the color most recently specified in GRbackcolor. The text string is the color most
recently specified in GRcolor.

Calling GRch_size before GRtext lets you specify the height and width of the characters in the string. This is
optional, however. The default size is xsize = 1 and ysize = 1 (see GRch_size).

The displayed text string is clipped to the current viewports.

GRtextsize

GRtext functions GR Routines

Returns the size of a text string in screen coordinates.

BOOLPARAM
GRtextsize (

char *textp,
int *xsize,
int *ysize)

GRtextsize returns the size of a text string, textp, in screen coordinates, xsize and ysize. The size of a string is the
height (ysize) and width (xsize) of the text’s rectangular boundary, in screen coordinates.

GRtransform
GRtransform Functions GR Routines

Converts screen coordinates to virtual coordinates and vice versa.

Screen coordinates are device-dependent. Virtual coordinates are in the range [0,32767], where the point (0,0) is the
lower left corner of the screen and (32767,32767) is the upper right corner. Therefore, the entire virtual coordinate
system space corresponds to the visible part of the bitmap. Note that a rectangle that is square in the virtual
coordinate system is not generally square in the screen coordinates system.

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRtransform Functions
GRscs_to_vcs Converts screen coordinates to virtual coordinates.
GRvcs_to_scs Converts virtual coordinates to screen coordinates.

Both return DV_SUCCESS or DV_FAILURE.

GRscs_to_vcs

GRtransform functions GR Routines

Converts screen coordinates to virtual coordinates.

BOOLPARAM
GRscs_to_vcs (

DV_POINT *input_p,
DV_POINT *virtual_p)

GRvcs_to_scs

GRtransform functions GR Routines

Converts virtual coordinates to screen coordinates.

BOOLPARAM
GRvcs_to_scs (

DV_POINT *input_p,
DV_POINT *screen_p)

GRvtext
GRvtext Functions GR Routines

Routines to manipulate vector text.

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRvtext Functions
GRfreevfont Frees memory allocated to a vector font.
GRgetvfont Gets the current vector font index.
GRgetvfontname Returns the font filename of a font index.
GRgetvheight Gets the height vector of a vector text string.
GRgetvmaxwidth Gets the width of the widest character in the vector string after

transformation.
GRgetvnorm Gets the vector text size normalization factor.
GRgetvspace Gets the inter-character and inter-line spacing.
GRgetvwidth Gets vector text string width vector.
GRvfont Sets the current vector font and loads into memory.
GRvfontname Assigns and returns the vector font index.
GRvspace Sets inter-character and inter-line spacing.
GRvtext Draws vector text at current position.
GRvtmatrix Sets vector text transformation matrix.

GRfreevfont

GRvtext functions GR Routines

Frees memory allocated to a vector font.

BOOLPARAM
GRfreevfont (

int nfont)

GRfreevfont frees the memory allocated to a vector font. Makes the font index available for newly loaded fonts.
Returns DV_SUCCESS if the font memory is freed successfully. Returns DV_FAILURE if the font index is invalid or
the font has already been freed. The VO level does not currently call this function. In other words, the VOvt routines
do not currently free a loaded font even if it is no longer referred to by any active vector texts.

GRgetvfont

GRvtext functions GR Routines

Gets the current vector font index.

int
GRgetvfont (void)

GRgetvfont returns the index of the current font, or -1 if no font is currently set.

GRgetvfontname

GRvtext functions GR Routines

Returns the font filename of a font index.

char *
GRgetvfontname (

int nfont)

GRgetvfontname returns the font filename of the font referred to by the font index. Every font indexed using
GRvfontname retains its font filename. This prevents the user from opening identical font files. Returns the font
filename character string pointer. This function also returns an internal pointer to the string which should be
modified with care.

GRgetvheight

GRvtext functions GR Routines

Gets the height vector of a vector text string.

void
GRgetvheight (

int nlines,
int *x,
int *y)

GRgetvheight gets information about the height of a vector text block in the current transform, font, and spacing,
given the number of lines of text, nlines. The variables x and y are the coordinates of the “text up vector” after
transformation. The text up vector begins at the lower left corner of first character body in the bottom line of text
and ends at the upper left corner of the first character body in the top line of text. If nlines is 0, the height returned is
just the interline spacing (after transformation). If nlines is -1, the return values represent the height of the one line
of text plus the transformed interline spacing.

GRgetvmaxwidth

GRvtext functions GR Routines

Gets the width of the widest character in the vector string after transformation.

void
GRgetvmaxwidth (

char *str,
int *x,
int *y)

GRgetvmaxwidth gets information about the width of the widest character in a vector text string, in the current font
and spacing after transformation. The variables x and y are the coordinates of the text baseline vector after the
transformation. The text baseline is a vector that begins at the lower left corner of the first character body and ends
at the lower right corner of the last character body of the string.

GRgetvnorm

GRvtext functions GR Routines

Gets the vector text size normalization factor.

void
GRgetvnorm (

int pixheight,
float *normfactor)

GRgetvnorm gets the normalization factor of the current font. The normalization factor is the ratio of the screen
coordinate height to the actual height, pixheight. The actual height of a font is defined in the font file. GRgetvnorm is
primarily useful for reducing all fonts to a standard size, which is system-defined at the VO level as
DEF_VFONT_SIZE. The following example demonstrates its use:

float normfactor;
int x, y;

GRgetvnorm (DEF_VFONT_SIZE, &normfactor);
GRgetvheight (1, &x, &y);
newx = normfactor * x;
newy = normfactor * y;

GRgetvspace

GRvtext functions GR Routines

Gets the inter-character and inter-line spacing.

void
GRgetvspace (

float *charspace,
float *linespace)

GRgetvwidth

GRvtext functions GR Routines

Gets vector text string width vector.

BOOLPARAM
GRgetvwidth (

char *str,
int *x,
int *y)

GRgetvwidth inquires about the width of a vector text string in the current font and spacing after transformation. The
variables x and y are the coordinates of the text baseline vector after the transformation. The text baseline is a vector
that begins at the lower left corner of the first character body and ends at the lower right corner of the last character
body of the string. A tab string (“\t”) returns the transformed inter-character spacing. A null pointer, NULL, returns
the transformed average character width of the font. A null character (“” or “\0”) returns just the slant vector.
Returns YES if the text is backslanted. Otherwise returns NO.

GRvfont

GRvtext functions GR Routines

Sets the current vector font and loads into memory.

BOOLPARAM
GRvfont (

int nfont)

GRvfont sets the current font using the font index. The font index is assigned using GRvfontname. If the font is not
yet loaded into memory, GRvfont tries to read it in from a font file using the font name passed to GRvfontname.
GRvfont does not reload a font that is already loaded into memory. Returns DV_SUCCESS if the font index is valid
and the font has been or can be loaded. Returns DV_FAILURE if the font index is invalid or if an error is
encountered when reading in the file. See also GRvfontname.

GRvfontname

GRvtext functions GR Routines

Assigns and returns the vector font index.

int
GRvfontname (

char *fontname)

GRvfontname stores vector text font filename, fontname, then assigns and returns a unique font index. The index is
used to refer to the font in GRvfont. Does not load the font into memory. Returns the font index. See also GRvfont.

GRvspace

GRvtext functions GR Routines

Sets inter-character and inter-line spacing.

void
GRvspace (

double charspace,
double linespace)

GRvspace sets inter-character and inter-line spacing. The inter-character spacing is specified as a fraction of the
font’s average character height and equal the spacing added between adjacent characters before transformation. The
default value is 0.0. The inter-line spacing is also specified as a fraction of the font’s height and equals the spacing
added between two lines of text. The default value is 0.0.

GRvtext

GRvtext functions GR Routines

Draws vector text at current position.

void
GRvtext (

char *string)

GRvtext draws vector text at the current position (CP) using the current font and spacing after applying the
transformation set by GRvtmatrix. The current font is set by GRvfont and the current spacing is set by GRvspace.
The current position is set by GRmove. If the vector definition of a character does not exist, it is not drawn. See also
GRvfont, GRvspace, GRmove, GRvtmatrix.

GRvtmatrix

GRvtext functions GR Routines

Sets vector text transformation matrix.

void
GRvtmatrix (

float tmatrix[2][2])

GRvtmatrix sets a two-by-two transformation matrix for transforming vector text, where the matrix is the product of
the scaling, rotation, and shearing matrix. The transformation matrix is stored internally using fixed point arithmetic.

GRwinevent
GRwinevent Functions GR Routines

Routines that facilitate the use of system windowing features within DV-Tools applications. Since these routines are
device-dependent, not all device drivers support them. If not supported, these routines return DV_FAILURE.
Routines are also provided at the VO level for handling window events, in the VOlo and VOsc sections.

The WINEVENT structure contains information about events such as key strokes, mouse motion, and resizing that
occur in windowing systems. A listing of the structure is located in DataViews Public Types in the Include Files
chapter.

GRcolor GRdraw GRraster GRtransform
GRcursor GRinquiry GRrqpcurve GRvtext
GRcurve GRpalette GRtext GRwinevent
GRdevice

GRwinevent Functions
GRwe_convert Converts a system-dependent event to a WINEVENT.
GRwe_gmask Gets the window event mask
GRwe_mask Sets the window event mask.
GRwe_poll Returns the next window event in the event queue.
GRwe_state Returns information about the last polled event.

These routines are not implemented by all device-drivers; therefore, they return DV_SUCCESS when they are
implemented, and DV_FAILURE when they cannot be implemented.

GRwe_convert

GRwinevent functions GR Routines

Converts a system-dependent event to a WINEVENT.

BOOLPARAM
GRwe_convert (

ADDRESS event,
WINEVENT *we)

GRwe_convert converts a system-dependent event structure to a WINEVENT structure. Fills the fields of a
WINEVENT structure with information from the system-dependent event, including filling the eventdata field with
the address of the system-dependent event structure. event is the address of the system-dependent event structure and
we is a pointer to the WINEVENT structure that is filled.

GRwe_gmask

GRwinevent functions GR Routines

Gets the window event mask.

BOOLPARAM
GRwe_gmask (

ULONG *mask,
ULONG *altmask)

GRwe_gmask gets the window event mask, which specifies which of the possible DataViews window event types is
returned by VOloWinEventPoll, VOscWinEventPoll, or GRwe_poll, and passes it to mask. The mask is an unsigned
long integer in which each bit represents a different type of window event. The types of events are represented by a
set of constants defined in dvGR.h. The window system-dependent mask is returned in altmask. mask or altmask can
be bitwise-ANDed together (using the & symbol in C) with the desired mask to determine if the mask is set
correctly.

To get the actual system-dependent mask which results from the combination of mask and altmask, use GRget with
the V_XWINDOW_MASK.

GRwe_mask

GRwinevent functions GR Routines

Sets the window event mask.

BOOLPARAM
GRwe_mask (

ULONG mask,
ULONG altmask)

GRwe_mask sets the current window’s event mask, mask, which specifies which DataViews window event types are
returned by GRwe_poll. The mask is an unsigned long integer where each bit represents a different type of window
event. The mask can be constructed by bitwise-OR’ing the WINEVENT type flags representing the events to be
noted. The mask acts as a positive filter which passes only the desired events occurring in that window to the event
queue. For example, the following call:

GRwe_mask (V_KEYPRESS | V_MOTIONNOTIFY, (ULONG)0);

lets GRwe_poll report only key press and mouse motion events.

Certain event type flags require additional information to be specified in altmask. altmask is an unsigned long
integer that is interpreted with a special flag in mask. For example, when the flag V_XWINDOW_MASK is OR’ed
into mask, it tells GRwe_mask to look in altmask for an X11 event mask. This allows any X Window event to be
returned. If the event does not fall into one of the standard DataViews event types, it is returned in the WINEVENT
type field as V_NON_STANDARD_EVENT.

To interpret a system-dependent event, you can access the eventdata field of the WINEVENT structure, where the
windowing system’s event data structure is copied. For example, under X the XEvent structure is copied into the
eventdata field. For more information about how it handles events, including flags for altmask and the system-
specific event data structure, refer to your windowing system manual.

Normally, GRwe_mask replaces the previous window event mask. However, if the V_ADD_TO_MASK flag is
OR’ed into mask, the events are added to the existing mask. See also GRwe_gmask, which you can use to get the
current mask and altmask.

The following WINEVENT type flags can be used to construct the mask parameter:

V_KEYPRESS Any key press, including modifier keys
(shift, control, etc.) and function keys.

V_KEYRELEASE Any key release, including modifier keys
(shift, control, etc.) and function keys.

V_BUTTONPRESS Any mouse button press.
V_BUTTONRELEASE Any mouse button release.
V_MOTIONNOTIFY Any motion of the mouse, with or without

the mouse buttons down.
V_ENTERNOTIFY The mouse has entered the window.
V_LEAVENOTIFY The mouse has left the window.
V_WINDOW_ICONIFY User requests a window iconify.
V_EXPOSE Some portion of the window has been

exposed and needs to be redrawn. The
rectlist field of the WINEVENT structure
contains a pointer to an array of the
exposed rectangular regions, and is
currently only implemented for X.

V_RESIZE The window size has changed.
V_WINDOW_QUIT User requests a window quit.
The following modifiers can be OR’ed with the window event mask:

V_EVENTS_OFF Turns off all events, regardless of
events that have been OR’ed into
the mask.

V_ADD_TO_MASK Indicates that the flags should be
added to the current mask, not
replace it.

V_XWINDOW_MASK Indicates that altmask is an X11 event
mask.

GRwe_poll

GRwinevent functions GR Routines

Returns the next window event in the event queue.

BOOLPARAM
GRwe_poll (

int mode,
int source,
WINEVENT *we)

GRwe_poll returns the next window event in the event queue. This information is copied into the WINEVENT
structure, we. Only event types that have been specified in the call to GRwe_mask are returned. If no mask is set, the
default mask passes key press, key release, button press, button release, motion notify, window quit, enter notify,
leave notify, iconify, expose, and resize events to the event queue. If the window contains widgets, the event queue
may contain non-DataViews events. These events are always passed onto the queue, regardless of the event mask.

mode specifies which of the following types of polling modes is used. When the event queue is empty and mode is
V_WAIT, GRwe_poll does not return until an event specified by mask or altmask in GRwe_mask is generated. If
mode is V_NO_WAIT, GRwe_poll does not wait until an event is generated, but returns V_NO_EVENT as the type of
event.

source determines whether events from other windows are reported. If source is V_CURRENT_WINDOW, only
events from the current window are reported. If source is V_MULTIPLE_WINDOW, all events in the event queue
are reported, regardless of their window origin. This flag is effective only where windows of the same device type
share a single event queue.

we must be a pointer to a WINEVENT structure, which is a DataViews public type. For more information about the
WINEVENT structure fields, see dvGR.h and the Include Files chapter. When altmask is specified in GRwe_mask for
handling device-specific events, these events are returned in the WINEVENT type field as the flag
V_NON_STANDARD_EVENT. The system event structure for interpreting the event can be accessed through the
eventdata field of the WINEVENT structure.

GRwe_state

GRwinevent functions GR Routines

Returns information about the last polled event.

BOOLPARAM
GRwe_state (

WINEVENT *we)

GRwe_state returns information about the last polled event. This information is copied into the devnum, loc,
maxpoint, and state fields of the WINEVENT structure, we.

The state field is returned in an unsigned long integer where each bit represents the state of different modifier keys
or mouse buttons. The state can be interpreted using the list of modifier keys and mouse buttons state flags, which
are OR’ed together to reflect the combination of modifier keys and mouse buttons. These flags are found in
VOloState.

Include Files
Include files contain typedefs for public types, defined constants, and function declarations for the DV-Tools
routines. The include files necessary to call routines in a layer are listed in the introduction to that layer; the include
files necessary for a particular module in the layer are listed in the synopsis for that module. Below is a summary of
the contents of each include file. For more details, the files themselves may be examined.

Tfundecl.h function declarations for T routines (formerly dvtoolsfuns.h)
VOfundecl.h function declarations for VO and VOob routines (formerly VOfuns.h)
VUerfundecl.h function declarations for VUer routines
VGfundecl.h function declarations for VG routines
VPfundecl.h function declarations for VP routines
VTfundecl.h function declarations for VT routines
VUfundecl.h function declarations for VU routines
GRfundecl.h function declarations for GR routines
std.h standard macros and constants (includes stdio.h)
dvGR.h constants used by GR and window management routines
GRkeysymdef.h key symbols used in WINEVENT structure
GRkeysym.h defines which group of key symbols in GRkeysymdef.h are used as defaults
GRlink.h indices into link tables used by GR graphics routines
VUpixrep.h structures and macros for use with pixreps
VUtextarray.h macros, constants, and public types used by VUta routines
dvstd.h constants, public types used by VP/VG/VU routines
dstypes.h data source type constants
dvmarker.h constants representing markers for graphs
dvdatatypes.h data type constants
VOstd.h constants, public types used by the VO and VOob routines
dvtools.h constants used by T routines
dvinteract.h constants used by the event handler and input objects
dvaxis.h constants used by the VUax routines
dvrule.h definitions for event, condition, and action constants that an application can use to define

rules
dvruletab.h contains several tables to help interpret conditions and actions.
dvfds.h macros, enums, and defines for function descriptor sets and data sources.
hashtypes.h constants and public types for VT hash table routines.
ringbuf.h macros and typedef for creating ring buffers
dvenv.h device-specific defines
FDSeval.h,
FDSevallex.h
FDSevalfuns.h

include files for use with the Function Descriptor Set FDSeval

Include Files
Introduction Definition of Include Files used in DataViews
Defined Constants Definitions for DV-Tools Defined Constants
Enums Definitions of DV-Tools Enums
DataViews Private Types Location of DataView Private Types Definitions
DataViews Public Types Definitions of DV-Tools Public Types
DataViews FUNPTR Types Definitions of DV-Tools Function Pointer Types

Defined Constants

The include files contain definitions for the following DV-Tools constants. By convention, they are all upper case.
Most are flags that indicate various messages to DV-Tools routines. The first column contains the constant name and
the second contains its defined value. The third may contain a brief description, valid values for flag-value pairs, the
type of the value for flag-value pairs, or other information.

Standard I/O File Descriptors (std.h)
STDIN 0
STDOUT 1
STDERR 2

Boolean Values (std.h)
YES 1
NO 0

Looping Macros (std.h)
FOREVER for (;;)

Useful I/O Constants (std.h)
BUFSIZE 512
BWRITE -1
READ "r"
WRITE "w"
READ_WRITE "????"
APPEND "a"
BYTMASK 0377

Return Value of DV-Tools Functions (dvstd.h and VOstd.h)
DV_SUCCESS YES
DV_FAILURE NO

World Coordinate Ranges (VOstd.h)
XMAX 16383 upper right corner
YMAX 16383
XMIN -16384 lower left corner
YMIN -16384

Coordinate Type Range (VOstd.h)
MAXCOORD 32767
MINCOORD -32768

ForEach and Traversal Flags (dvstd.h)
V_CONTINUE_TRAVERSAL 0
V_HALT_TRAVERSAL 1

Data Type Flags (dvdatatypes.h)
V_C_TYPE 1 char
V_UC_TYPE 2 unsigned char, UBYTE
V_S_TYPE 3 short
V_US_TYPE 4 unsigned short

V_L_TYPE 5 LONG
V_I_TYPE 5 int
V_UL_TYPE 6 ULONG
V_UI_TYPE 6 unsigned int
V_F_TYPE 7 float
V_D_TYPE 8 double
V_T_TYPE 9 text string, NULL-terminated
V_DSV_TYPE 10 data source variable
V_NULL_TYPE 0 list terminator

Attribute Fields Enumerated Constants (VOstd.h)
FOREGROUND_COLOR 1
BACKGROUND_COLOR 2
LINE_WIDTH 3
LINE_TYPE 4
FILL_STATUS 5
TEXT_DIRECTION 6
TEXT_POSITION 7
TEXT_FONT 8
TEXT_SIZE 9
ARC_DIRECTION 10
CURVE_TYPE 11
TEXT_FONTNAME 12
TEXT_WIDTH 13
TEXT_HEIGHT 14
TEXT_ANGLE 15
TEXT_SLANT 16
TEXT_CHARSPACE 17
TEXT_LINESPACE 18
PROP_FILL 22
FILL_AMOUNT 23
TEXT_UNDERLINE 24
TEXT_WEIGHT 25
TEXT_PTSIZE 26

Attributes Structure Values (VOstd.h)

General attribute field defined constants:
EMPTY_FIELD -2 indicates empty field
EMPTY_FLOAT_FIELD -99999.0 indicates empty field
DONT_SET_THE_VALUE ((OBJECT)-2) indicates not to change field

Line type attribute field defined constant:
SOLID_LINE 1

Fill status attribute field defined constants:
FILL ’f’
EDGE ’u’
EDGE_WITH_FILL 0xBF
FILL_WITH_EDGE 0xFB
DV_TRANSPARENT ’t’
FILLED_OBJECT FILL maintained for compatibility
UNFILLED_OBJECT EDGE maintained for compatibility

Text direction attribute field defined constants:
HORIZONTAL_TEXT ’h’

VERTICAL_TEXT ’v’

Text position attribute field defined constants:
AT_TOP_EDGE 0x1
AT_BOTTOM_EDGE 0x2
AT_LEFT_EDGE 0x4
AT_RIGHT_EDGE 0x8
CENTERED 0x10
POSITION_FLAGS_MASK 0x1F bitwise OR of above flags to make 9 positions

Text weight attribute defined constants:
NORMAL_WEIGHT 400
BOLDFACE_WEIGHT 700

Arc direction attribute field defined constants:
CLOCKWISE ’r’
COUNTER_CLOCKWISE ’l’

Proportional fill attribute field defined constants:
PROP_FILL_NONE ((char)0)
PROP_FILL_RIGHT ((char)1)
PROP_FILL_UP ((char)2)
PROP_FILL_LEFT ((char)3)
PROP_FILL_DOWN ((char)4)

Polygon curve attribute field defined constants:
FLOATING_ENDS ’f’
OPEN_ENDS ’o’
CLOSED_ENDS ’c’

Attributes Structure Default Values (VOstd.h)
DEF_BACKGROUND_COLOR NULL
DEF_FOREGROUND_COLOR NULL
DEF_LINE_WIDTH 1
DEF_LINE_TYPE SOLID_LINE
DEF_FILL_STATUS UNFILLED_OBJECT
DEF_TEXT_DIRECTION HORIZONTAL_TEXT
DEF_TEXT_POSITION CENTERED
DEF_TEXT_FONT 0
DEF_TEXT_SIZE 2
DEF_ARC_DIRECTION COUNTER_CLOCKWISE
DEF_CURVE_TYPE NULL
DEF_VFONT_SIZE 1024
DEF_TEXT_CHARSPACE 0.0
DEF_TEXT_LINESPACE 0.0
DEF_TEXT_WIDTH 1.0
DEF_TEXT_HEIGHT 1.0
DEF_TEXT_ANGLE 0.0
DEF_TEXT_SLANT 0.0
DEF_TEXT_FONTNAME "roman.vf"
DEF_PROP_FILL PROP_FILL_NONE
DEF_FILL_AMOUNT SHORT_MAX

 DEF_SFTEXT_FONTNAME "Times New Roman"
 DEF_SFTEXT_WIDTH 0.0
 DEF_SFTEXT_HEIGHT 0.0

* This value is in tenths of a point.

 These attributes replace DEF_TEXT_FONTNAME, DEF_TEXT_WIDTH, and DEF_TEXT_HEIGHT for scalable
font text objects. They have no meaning for objects that are not scalable font text objects.

VOxxStatistic Flags (VOstd.h)
OBJECT_COUNT ’c’ returns number of given object types

Display Formatter Entry Points (dvstd.h)
V_INITIAL_DISPLAY 0
V_CLEANUP_ALLOCS 1
V_UPDATE_DISPLAY 2
V_CANT_DISPLAY 3
V_QUERY_DISPLAY 4
V_SETUP_DISPLAY 5
V_DRAW_CONTEXT 6
V_DRAW_DATA 7
V_TAKE_DATA 8
V_RECV_MESSAGE 9
V_DFTABLE_SIZE 11

Datum Type Flags (VOstd.h)
FLOAT_DATUM (DATUM_TYPE) ’f’
INT_DATUM (DATUM_TYPE) ’i’
TEXT_DATUM (DATUM_TYPE) ’t’
OBJECT_DATUM(obtype) (DATUM_TYPE)(’O’)|

(DATUM_TYPE)(obtype<<8)

Datum Type Macros (VOstd.h)
IS_FLOAT_DATUM(datype) ((datype)==FLOAT_DATUM)
IS_INT_DATUM(datype) ((datype)==INT_DATUM)
IS_OBJECT_DATUM(datype)((datype)&0xFF)==’O’))
DATUM_O_TYPE(datype) ((datype)>>8)&0xFF)
IS_TEXT_DATUM(datype) ((datype)==TEXT_DATUM)

Undefined Values (dvparams.h and dvstd.h)
V_UNDEFINED -1
UNDEFINED_COLOR_INDEX 0x7fffffff undefined color specification

Window Attribute Flags (dvGR.h)
V_END_OF_LIST 0
V_DRAW_FUNCTION 0x55570011 V_XOR or

V_COPY open/set/get
V_WINDOW_WIDTH 0x55572001 int open/set/get
V_WINDOW_HEIGHT 0x55572011 int open/set/get
V_WINDOW_X 0x55572021 int open/set/get
V_WINDOW_Y 0x55572031 int open/set/get
V_WINDOW_NAME 0x55572041 char * open/set/get
V_CLUT_DEPTH 0x55522051 int get

V_RASTER_DEPTH 0x55522061 int get
V_EVENTS_REPORTED 0x55522071 ULONG get

Window system data structures:
V_INPUT_FD 0x55521001 int get
V_DISPLAY 0x55531021 Display * open/get
V_ICON_NAME 0x55571071 char * open/set/get
V_MOTION_COLLAPSE 0x55551081 BOOLPARAM open/set
V_EXPOSE_COLLAPSE 0x55551091 BOOLPARAM open/set

DataViews pre-defined cursors:
V_ACTIVE_CURSOR 0x55553000 No Value open/set
V_INITIAL_CURSOR 0x55553010 No Value open/set

Queries about capabilities of the driver and system:
V_HAS_WINEVENTS 0x55524001 BOOLPARAM get
V_HAS_PLANE_MASKING 0x55524011 BOOLPARAM get
V_HAS_XOR 0x55524021 BOOLPARAM get
V_IS_BLACK_AND_WHITE 0x55524031 BOOLPARAM get
V_IS_WINDOW_SYSTEM 0x55524041 BOOLPARAM get
V_NUM_FONTS 0x55524051 int get

Queries about the system-specific masks:
V_XWINDOW_MASK 0x1000000 ULONG get
V_WINNT_MASK 0x8000000 ULONG get

Microsoft Windows-specific data structures:
V_WIN32_NEWFONT 0x55559052 int, HFONT open/set
V_WIN32_WINDOW_HANDLE 0x55579061 HWND open/set/get
V_WIN32_WINDOWPROC 0x55529081 function ptr get
V_WIN32_DOUBLE_BUFFER 0x55579091 int open/set/get
V_WIN32_XORFLAG 0x555790A1 int open/set/get
V_WIN32_IS_DV_DEVICE 0x555290B2 HWND, int * get
V_WIN32_HPALETTE 0x555390C1 HPALETTE open/get
V_WIN32_ICON_NAME 0x555790D1 char * open/set/get

X11-specific data structures:
V_X_WINDOW_ID 0x55536001 Window open/get
V_X_DISPLAY 0x55536011 Display * open/get
V_X_DISPLAY_NAME 0x55536021 char * open/get
V_X_APPLIC_CLASS 0x55536031 char * open/get
V_X_APPLIC_NAME 0x55536041 char * open/get
V_X_CURSOR 0x55576071 Cursor open/set/get
V_X_ICON 0x55576081 char * open/set/get
V_X_ICON_WIDTH 0x55576091 int open/set/get
V_X_ICON_HEIGHT 0x555760A1 int open/set/get
V_X_SHELL 0x555360B1 Widget get
V_X_DRAW_WIDGET 0x555360C1 Widget open/get
V_X_FONTSTRUCT 0x555760D2 int, XFontStruct *

open/set/get
V_X_APPLIC_CONTEXT 0x555360E1 XtAppContext

open/get
V_X_RAS_SYNC 0x555760F1 BOOLPARAM open/set/get
V_X_EXPOSURE_BLOCK 0x55576131 BOOLPARAM open/set/get
V_X_RESIZE_BLOCK 0x55576141 BOOLPARAM open/set/get
V_X_DOUBLE_BUFFER 0x55576151 BOOLPARAM open/set/get
V_X_COLORMAP 0x55576161 Colormap open/set/get
V_X_PIXELS 0x55576172 int,

unsigned long[]

open/set/get
V_X_PLANES 0x55576182 int,

unsigned long[]
open/set/get

V_X_GC 0x55526191 GC get
V_X_POLY_HINT 0x555761A1 int open/set/get
V_X_IMAGE_STRING 0x555761B1 BOOLPARAM open/set/get
V_X_DASH_STYLE 0x555761C1 LineDoubleDash

or LineOnOffDash
open/set/get

V_X_ICON_X 0x555161D1 int open
V_X_ICON_Y 0x555161E1 int open
V_X_ICONIC 0x555161F1 BOOLPARAM open

WINEVENT type Flags (dvGR.h)
V_KEYPRESS 0x1
V_KEYRELEASE 0x2
V_BUTTONPRESS 0x4
V_BUTTONRELEASE 0x8
V_MOTIONNOTIFY 0x10
V_ENTERNOTIFY 0x20
V_LEAVENOTIFY 0x40
V_EXPOSE 0x80
V_RESIZE 0x100
V_WINDOW_QUIT 0x200
V_WINDOW_ICONIFY 0x400

V_NON_STANDARD_EVENT 0x800
V_NON_DV_WINDOW_EVENT 0x1000

V_EVENTS_OFF 0x10000
V_NO_EVENT 0x20000
V_ADD_TO_MASK 0x40000
V_XWINDOW_MASK 0x1000000

WINEVENT state Flags (dvGR.h)
V_STATE_SHIFT 0x1
V_STATE_LOCK 0x2
V_STATE_CONTROL 0x4
V_STATE_MOD1 0x8
V_STATE_MOD2 0x10
V_STATE_MOD3 0x20
V_STATE_MOD4 0x40
V_STATE_MOD5 0x80
V_STATE_BUTTON1 0x100
V_STATE_BUTTON2 0x200
V_STATE_BUTTON3 0x400
V_STATE_BUTTON4 0x800
V_STATE_BUTTON5 0x1000

WINEVENT Polling Modes (dvGR.h)
V_WAIT 1
V_NO_WAIT 2

GRbspcubics, GRbspdraw end_conditions Flags (VOstd.h)
OPEN_ENDS ’o’
CLOSED_ENDS ’c’

FLOATING_ENDS ’f’

GRcr_event Flags (dvGR.h)
V_LOC_CHANGE_WAIT 1
V_LOC_PICK_WAIT 2
V_LOC_NO_WAIT 3
V_LOC_PICK_NO_WAIT 4

GRrasquery Flags (dvGR.h)
RAS_CREATE 14
RAS_DRAW 12
RAS_DRAWPART 19
RAS_GET 13
RAS_GPIX 16
RAS_GPXRP 22
RAS_MOVE 11
RAS_SMASK 20
RAS_SMASKPXRP 23
RAS_SPIX 17
RAS_SPIXELS 18
RAS_SPXRP 21

GRwe_poll source Flags (dvGR.h)
V_CURRENT_WINDOW 1
V_MULTIPLE WINDOW 2

TdlSave, TdsSave, and TviFileSave access_mode Flags (VOstd.h)
WRITE_EXPANDED ’W’ ASCII write
WRITE_COMPACT ’w’ binary write

TdpGetXform Flags (VOstd.h)
DR_TO_SCREEN 3 drawing to screen xform
SCREEN_TO_DR 4 screen to drawing xform

TdrGetSelectedObject Flags (dvtools.h)
NAMED_SEARCH 0 search view for selection of named object
FULL_SEARCH 1 search entire view for selected object

TdsEditAttributes, TdsvEditAttributes Error! Reference source not found.Flags (dvtools.h)
NOCHANGE -1 for attributes to remain unchanged

TdsvEditAttributes, TdsvGetAttributes delimiter Flags (dvstd.h)
V_SINGLE_QUOTED ’\001’ two single quotes separate text strings.
V_DOUBLE_QUOTED ’\002’ two double quotes separate text strings.

TdsEditAttributes, TdsGetAttributes Type and Format Flags (dstypes.h)
DSPROCESS 1 process data source type
DSFILE 2 file data source type
DSCONSTANT 3 constant data source type
DSFUNCTION 5 function data source type

DSMEMORY 6 memory data source type
DSASCII 2 ASCII file or process data source format
DSBINARY 3 binary file or process data source format

TdsvGetGlobalFlag, TdsvSetGlobalFlag Flags (dvstd.h)
V_LOCAL 1
V_GLOBAL 2

TloPoll Flags (dvtools.h)
LOC_POLL 0 return valid location object in any event
WAIT_PICK 1 block until selection key or button
WAIT_CHANGE 2 block until cursor movement or key press
PICK_POLL 3 does not block, returns location object

TprotoHandleInput Return Flag (dvtools.h)
V_TPROTO_QUIT -1

TscPrintSet Flags (dvGR.h and dvstd.h)
VP_PRINT_ORIENTATION 0x555490E1
VP_PRINT_SCALE 0x555490F1
VP_PRINT_QUALITY 0x55549111
VP_PRINT_DEVICE 0x55549131
VP_PRINT_PORT 0x55549141
VP_PRINT_DRIVER 0x55549151
VP_PRINT_NO_WARNING 0x55549161
VP_PRINT_DOCUMENT_NAME 0x55549171
DV_PORTRAIT 1
DV_LANDSCAPE 2
DV_DRAFT -1
DV_LOW -2
DV_MEDIUM -3
DV_HIGH -4

TviMergeAddDataSources, TviMergeDataSources, TdsMerge Flags (dvtools.h)
DS_EXACTMATCH 2 match ds’s exactly when merging views
DS_SUBSETMATCH 3 one ds must be a subset of a current ds
DS_NAMEMATCH 4 only ds names must match when merging

VOcoCreate, VOcoSubtype Flags (VOstd.h)
COLOR_COMPONENTS ’c’ three color primaries in range [0,255]
COLOR_INDEX ’i’ color look-up-table index
COLOR_NAME ’n’ color name character string
COLOR_REFERENCE ’r’ referenced color object
COLOR_STRUCTURE ’s’ pointer to a COLOR_SPEC structure

VOdqAdd, Error! Reference source not found.VOdqAddDq Flags (VOstd.h)
TOP ’t’ top of deque
BOTTOM ’b’ bottom of deque

VOdrBackcolor Flags (VOstd.h)
NO_BACKGROUND -1 transparent drawing background

VOdrOffcolor Flags (VOstd.h)
NO_OFF_DRAWING_COLOR -1 off-drawing region is transparent

VOdynamics Dynamic Action Flags (VOstd.h)
V_DYN_ROTATE 30
V_DYN_PATH_MOVE 31
V_DYN_REL_MOVE_X 32
V_DYN_REL_MOVE_Y 33
V_DYN_ABS_MOVE_X 34
V_DYN_ABS_MOVE_Y 35
V_DYN_SCALE 36
V_DYN_SCALE_X 37
V_DYN_SCALE_Y 38
V_DYN_SUBDRAWING 39
V_DYN_FILL_RIGHT 40
V_DYN_FILL_UP 41
V_DYN_FILL_LEFT 42
V_DYN_FILL_DOWN 43
V_DYN_TEXT 44
V_DYN_VISIBILITY 45

See also Attribute Field Enumerated Constants that are used for attribute dynamics.

VOdyGetEraseMethod, VOdySetEraseMethod Flags (VOstd.h)
V_DYN_ERASE_REDRAW_DELAY 1
V_DYN_ERASE_RASTER 2
V_DYN_ERASE_OBJECT 3
V_DYN_ERASE_XOR 4
V_DYN_ERASE_NONE 5
V_DYN_ERASE_REDRAW_IMMEDIATE 6
V_DYN_ERASE_BOX 7

VOinGetInternal Flags (dvinteract.h)
TRANSFORM 0 layout to screen transform
AREA_DEQUE 1 deque of menu item bounding rectangles
OBJECT_TRANS 2 transform for drawing embedded input objects
INOBJS_DEQUE 3 deque of embedded input objects
OBJECT_DEQUE 4 deque of menu objects
ITEM_DEQUE 5 deque of menu text objects
INITIAL_VALUE 6 original value of the variable descriptor
INITIAL_XVALUE 7 original value of the x variable descriptor
INITIAL_YVALUE 8 original value of the y variable descriptor
ECHO_VIEWPORT 9 primary echo area

VOinPutFlag, VOinGetFlag Flags (dvinteract.h)
SAVE_RASTER 1 save overwritten portion of screen (YES/NO)
ERASE_METHOD 2 how to erase interaction area when done
DRAW_LAYOUT_BOUND 3 draw layout boundary (YES/NO)
DRAW_ECHO_BOUND 4 draw echo viewport boundary (YES/NO)
REDRAW_ON_UPDATE 6 redraw obscuring objects (YES/NO)

VOinPutFlag, VOinGetFlag ERASE_METHOD Flags (dvinteract.h)
RESTORE_RASTER 0 restore the saved raster, if possible
CALL_REDRAW 1 repair damage by calling VOscRedraw
ERASE_RECTANGLE 2 erase the viewport to the background

NO_ERASE 3 don’t erase, just cleanup the data

VOinState Flags (dvinteract.h)
ACTIVE 1
INACTIVE 2

VOitKeyOrigin Flags (dvinteract.h)
LOCAL_KEYS 0
GLOBAL_KEYS 1

VOitPutEchoFunction Flags (dvinteract.h)
INITIAL_DRAW 0 Called when drawn
TAKE_INPUT 1 Called when input is taken
UPDATE_DRAW 2 Called when explicitly updated
ERASE 3 called when erased
CONTEXT_REDRAW 4 called when redrawn

SETUP_FOR_DRAW 5 sub-action for setting draw information
CONTEXT_DRAW 6 sub-action for drawing static portion
CLEANUP_DATA 7 sub-action for clearing data
DATA_RESET 8 sub-action for resetting data

VOitPutList, VOitGetList Flags (VOstd.h)
TEXT_LIST ’t’ pickable item list of text strings
OBJECT_LIST ’o’ pickable item list of objects
NO_LIST NULL no pickable item list

VOobType Object Type Flags (VOstd.h)
LOWEST_TYPE_CODE 1
HIGHEST_TYPE_CODE 41
OT_ARC 1 arc object
OT_CIRCLE 3 circle object
OT_COLOR 4 color object
OT_DEQUE 7 deque object
OT_DG 8 data group object
OT_DRAWING 9 drawing object
OT_DYNAMIC 37 dynamic control object
OT_EDGE 30 edge object
OT_ELLIPSE 32 ellipse object
OT_ICON 13 icon object
OT_IMAGE 5 image object
OT_INPUT 27 input object
OT_INPUT_TECHNIQUE 28 input technique object
OT_LINE 11 line object
OT_LOCATION 12 location object
OT_NODE 31 node object
OT_PIXMAP 2 pixmap object
OT_POINT 15 point object
OT_POLYGON 16 polygon object
OT_RECTANGLE 17 rectangle object
OT_REFCOLOR 38 reference color object
OT_RGB 18 RGB color object
OT_RULE 36 rule object
OT_SCREEN 19 screen object

OT_SLOTKEY 33 slotkey object
OT_SUBDRAWING 21 subdrawing object
OT_TEXT 22 text object
OT_THRESHTABLE 23 threshold table object
OT_VD 24 variable descriptor object
OT_VTEXT 29 vector text object
OT_XFORM 26 transform object

VOptCreate, VOptFCreate Flags (VOstd.h)
PIXEL_COORDINATES ’p’ screen coordinate pt
SCREEN_COORDINATES ’p’ screen coordinate pt
WORLD_COORDINATES ’w’ world coordinate pt

VOptMove Flags (VOstd.h)
DV_ABSOLUTE ’A’ move absolute pt by absolute amount
DV_RELATIVE ’a’ move absolute pt by relative amount
ADJUST_OFFSET_WORLD ’r’ adjust relative pt in world coords
ADJUST_OFFSET_SCREEN ’p’ adjust relative pt in screen coords

VOruGetInfo, VOruSetInfo Flags (dvrule.h)

Rule components:
V_R_EVENT 1
V_R_CONDITION 2
V_R_ACTION 3

Rule Events:
V_RE_PICK 1
V_RE_DONE 2
V_RE_ACCEPT 3 superseded by V_RE_EVENT_USED
V_RE_CANCEL 4
V_RE_DRAW 5
V_RE_UPDATE 6
V_RE_EVENT_USED 7
V_R_NUM_EVENTS 7

Rule Conditionals Operands:
V_RC_ALWAYS 1
V_RC_PICK_BUTTON 2
V_RC_PICK_ASCII 3
V_RC_DSV_VALUE 4
V_RC_DSV_DSV 5
V_RC_OBJ_VAR_VALUE 6
V_R_NUM_CONDITIONS 6

Rule Conditionals Operators:
V_RC_EQUAL 1
V_RC_NOT_EQUAL 2
V_RC_LESS_THAN 3
V_RC_LESS_EQUAL_THAN 4
V_RC_GREATER_THAN 5
V_RC_GREATER_EQUAL_THAN6
V_RC_NUM_OPERATORS 6

Rule Actions:
V_RA_NEXT 1

V_RA_PREVIOUS 2
V_RA_OVERLAY_VIEW 3
V_RA_DEL_OVERLAY_VIEW 4
V_RA_OVERLAY_OBJ 5
V_RA_DEL_OBJECT 6
V_RA_POPUP_AT 7
V_RA_ERASE_ALL_POPUP_AT 9
V_RA_REDRAW 10
V_RA_QUIT 11
V_RA_NOTHING 12
V_RA_SYSTEM_CALL 13
V_RA_ERASE_ALL_OVERLAYS 14
V_RA_START_DYNAMICS 15
V_RA_STOP_DYNAMICS 16
V_RA_INC_UPDATE_RATE 17
V_RA_DEC_UPDATE_RATE 18
V_RA_SET_DSV 19
V_RA_INC_DSV 20
V_RA_DEC_DSV 21
V_R_NUM_ACTIONS 21

VOsdGetDynamicFlag, VOsdSetDynamicFlag Flags (VOstd.h)
SD_DYN_NONE 0 get
SD_DYN_DISABLED 1 get/set
SD_DYN_ENABLED 2 get/set
SD_DYN_RESET 3 set

VOsdGetSelectedObject Flags (dvtools.h)
NAMED_SEARCH 0 search view for selection of named object
FULL_SEARCH 1 search entire view for selected object

VOskDeclare, VOskGetType Flags (VOstd.h)
VOSK_EXTERNAL_TYPE ((int)’x’)
VOSK_INT_ARRAY_TYPE ((int)’I’)
VOSK_INT_TYPE ((int)’i’)
VOSK_STRING_TYPE ((int)’t’)
VOSK_FLOAT_ARRAY_TYPE ((int)’F’)
VOSK_FLOAT_TYPE ((int)’f’)
VOSK_OBJECT_TYPE ((int)’o’)

VOuObMove Flags (VOstd.h)
RELATIVE_MOVE ’r’ move by a relative amount
ABSOLUTE_MOVE ’a’ move to an absolute position

VOvdCreate, VOvdType Flags (VOstd.h)
COLOR ’c’ color type variable descriptor; obsolete
NUMBER ’n’ number type variable descriptor
DV_TEXT ’t’ text type variable descriptor

VGdgdfstatus (dvstd.h)
V_DGDF_CANT_DRAW 0x1 did the setup fail?
V_DGDF_SETUP_DONE 0x2 did the setup succeed?
V_DGDF_CONTEXT_DRAWN 0x4 was the context drawn?
V_DGDF_ALL 0x7 all

VPdgaxlabel, VGdgaxlabel, VGdgticlabfcn, VPdgticlabfcn, VUdgticlabtab Flags (dvstd.h)
V_FIRST_AXIS ’1’ first spatial dimension
V_SECOND_AXIS ’2’ second spatial dimension
V_TIME_AXIS ’t’ time dimension

VPdgcontext, VGdgcontext, VUdbgCcf Flags (dvstd.h)
V_FPRE_ERASE 0x1 erase before drawing?
V_FCONTEXT 0x2 draw context?
V_FLEGEND 0x4 draw legend?
V_FVPBOX 0x8 draw box around graph?
V_FT_TICS 0x10 draw time axis ticks?
V_FT_MINTICS 0x20 minimum time ticks?
V_FT_LABEL_TICS 0x40 label time axis ticks?
V_FD1_TICS 0x80 draw d1 axis ticks?
V_FD1_MINTICS 0x100 minimum d1 ticks?
V_FD1_LABEL_TICS 0x200 label d1 axis ticks?
V_FD2_TICS 0x400 draw d2 axis ticks?
V_FD2_MINTICS 0x800 minimum d2 ticks?
V_FD2_LABEL_TICS 0x1000 label d2 axis ticks?
V_FV_TICS 0x2000 draw value axis ticks?
V_FV_MINTICS 0x4000 minimum value ticks?
V_FV_LABEL_TICS 0x8000 label value axis ticks?
V_FV_MULT_RANGE 0x10000 multiple value ranges?
V_FV_GRID 0x20000 draw value axis grid?
V_FT_GRID 0x40000 draw time axis grid?
V_FPITCH_TICS 0x80000 draw pitch axis ticks?
V_FPITCH_LABEL_TICS 0x100000 label pitch axis ticks?
V_FROLL_TICS 0x200000 draw roll axis ticks?
V_FROLL_LABEL_TICS 0x400000 label roll axis ticks?
V_F_ALL 0x7fffff all the flags

VPdgdfquery Flags (dvstd.h)
V_Q_DATA_SAMPLE 12 gets the number of the closest sample
V_Q_DATA_SLOTSIZE 7 gets the size of an element in spectro graphs
V_Q_DATA_VALUE 13 gets the closest data value
V_Q_DATAVP 0 gets the area devoted to encoding
V_Q_DOES_CLIPPING 5 determines whether the formatter clips
V_Q_FLOOR_VALUE 14 gets the underlaying value in stacked graphs
V_Q_LEGSIZE 6 gets the size of the legend
V_Q_SAMPLE_AT_LOCATION 11 gets the interpolated sample at a point
V_Q_SECTOR_AT_LOCATION 15 gets the sector in radial graphs

V_Q_SLOT_AT_LOCATION 8 gets the slot number at a point
V_Q_SLOTSIZE 1 gets the size of a slot
V_Q_VALUE_AT_LOCATION 10 gets the value at a point
V_Q_VDPS_AT_LOCATION 9 gets the vdps displaying data at a point
V_Q_VDTITLE_CHARSIZE 4 gets title size from the VDtext display
V_Q_VDTITLE_TEXTVP 3 gets title size from the VDtext display

VPdgdrcontext, VPdgdrdata (dvstd.h)
V_BF_LATEST_N 0 draw the recent n iterations
V_BF_UNDISP 1 draw the undisplayed data
V_BF_DISP 2 redraw the displayed data

VPvd_accmode, VGvd_accmode Flags (dvstd.h)

V_DIR_ACCESS 0
V_INDIR_ACCESS 1
V_DS_BOUND 3

VPvdsymbol, VGvdsymbol Flags (dvmarker.h)
V_NULL_SYMBOL ’ ’ default
V_ASTERISK ’*’ asterisk
V_DOT ’.’ dot
V_PLUS ’+’ plus
V_CROSS ’x’ x
v_DIAMOND ’d’ diamond
V_FILLED_DIAMOND ’D’ filled diamond
V_CIRCLE ’o’ circle
V_FILLED_CIRCLE ’O’ filled circle
V_BOX ’r’ box
V_FILLED_BOX ’R’ filled box
V_TRIANGLE ’t’ triangle (apex up)
V_FILLED_TRIANGLE ’T’ filled triangle (apex up)
V_INVERTED_TRIANGLE ’v’ triangle (apex down)
V_FILLED_INVERTED_TRIANGLE ’V’ filled triangle (apex down)
V_TRIANGLE_RIGHT ’)’ triangle (apex right)
V_FILLED_TRIANGLE_RIGHT ’>’ filled triangle (apex right)
V_TRIANGLE_LEFT ’(’ triangle (apex left)
V_FILLED_TRIANGLE_LEFT ’<’ filled triangle (apex left)
V_VERTICAL_LINE ’|’ vertical line
V_HORIZONTAL_LINE ’-’ horizontal line

VUaxGet Flags (dvaxis.h)
AXIS_BOUNDS 26 RECTANGLE *
BASE_EXPONENT 36 int *
INITIAL_TICK_VALUE 27 double *
INITIAL_TICK_POINT 28 DV_POINT *
MAJOR_PIXEL_GAP 29 double *
MAJOR_VALUE_GAP 30 double *
MINOR_PIXEL_GAP 31 double *
MINOR_VALUE_GAP 32 double *
MINOR_TICKS_PER_MAJOR 33 int *
TICK_LABEL_EXTENT 38 DV_POINT *

VUaxSet Flags (dvaxis.h)
AXIS_COLOR 1 int
AXIS_DIRECTION 2 int
AXIS_IS_LOG 3 int
AXIS_LENGTH 4 int
AXIS_NEW_START_VALUE 5 double
AXIS_START_POINT 6 DV_POINT *
DRAW_GRID 7 int
DRAW_LABELS 8 int
DRAW_MINOR_TICKS 35 int
DRAW_TICKS 9 int
GRID_COLOR 11 int
GRID_EXCLUDE_ENDS 12 int
GRID_LENGTH 13 int
GRID_LINE_TYPE 14 int
GRID_SIDE 15 int
HIGHEST_VALUE 37 double
INTEGER_AXIS 34 int

LABEL_DISTANCE 16 int
LABEL_FORMAT_FUNCTION 41 ADDRESS, ADDRESS, int
LABEL_SIDE 18 int
LABEL_TEXTSIZE 19 int
MIN_MAJOR_PIXEL_GAP 20 double
MIN_MAJOR_VALUE_GAP 21 double
MIN_MINOR_PIXEL_GAP 22 double
MIN_MINOR_VALUE_GAP 23 double
TICK_LENGTH 24 int
TICK_SIDE 25 int

VUaxSet Direction Flags (dvaxis.h)
AXIS_RIGHT 1
AXIS_UP 2
AXIS_LEFT 3
AXIS_DOWN 4
LEFT_SIDE AXIS_LEFT
RIGHT_SIDE AXIS_RIGHT

VUerBoundaryEventPost, VUerBoundaryEventDpPost Flags (dvinteract.h)
VUER_POS_EVENT 0
VUER_SE_EVENT 1
VUER_BRE_EVENT 2
VUER_DOE_EVENT 3
VUER_SRR_EVENT 4
VUER_OPOS_EVENT 5

VUer*Post InOut Flags (dvinteract.h)
V_OUTSIDE 0
V_INSIDE 1

VUerHandleLocEvent, VUerServiceResultPost Service Result Flags (dvinteract.h)
INPUT_ACCEPT 0x0001
INPUT_DONE 0x0002
INPUT_CANCEL 0x0004
INPUT_USED 0x0008
INPUT_UNUSED 0x0010

VUerHandler Termination Flags (dvinteract.h)
ER_STOP_ON_ANY_EDGE 0x001 any key press or release
ER_STOP_ON_LEAD_EDGE 0x002 reserved for future enhancements
ER_STOP_ON_ANY_USE 0x008 result != INPUT_UNUSED
ER_STOP_ON_UNUSED 0x010 result == INPUT_UNUSED
ER_STOP_ON_DONE 0x020 result == INPUT_DONE
ER_STOP_ON_ACCEPT 0x040 result == INPUT_ACCEPT
ER_STOP_ON_CANCEL 0x080 result == INPUT_CANCEL
ER_STOP_ON_USED 0x100 result == INPUT_USED

VUerPutKeys, VUerGetKeys, VOitPutKeys, and VOitGetKeys Action Type Flags (dvinteract.h)
SELECT_KEYS 0
CANCEL_KEYS 1
DONE_KEYS 2
RESTORE_KEYS 3

CLEAR_KEYS 4
TOGGLE_POLLING_KEYS 8

VUerWinEventPost Flags (dvinteract.h)
VUER_RESIZE_EVENT 6
VUER_WINQUIT_EVENT 7
VUER_ICONIFY_EVENT 8
VUER_EXPOSE_EVENT 9
VUER_WIN_ENTER_EVENT 10
VUER_WIN_LEAVE_EVENT 11

VUtaCreate spec_flag Flags (VUtextarray.h)

Text array orientation flags:
V_OP_BITS 0x0F
V_OP_TOP 0x01
V_OP_BOTTOM 0x02
V_OP_LEFT 0x04
V_OP_RIGHT 0x08
V_OP_LL (V_OP_BOTTOM|V_OP_LEFT)
V_OP_LR (V_OP_BOTTOM|V_OP_RIGHT)
V_OP_UL (V_OP_TOP|V_OP_LEFT)
V_OP_UR (V_OP_TOP|V_OP_RIGHT)
V_OP_CENTERED 0x00

Flags defining how to resolve size:
V_RSLVE_BITS 0x30
V_RSLVE_X_GREATER 0x10
V_RSLVE_Y_GREATER 0x20
V_RSLVE_X_LESSER 0x00
V_RSLVE_Y_LESSER 0x00
V_RSLVE_GREATER (V_RSLVE_X_GREATER|V_RLVE_Y_GREATER)
V_RSLVE_LESSER (V_RSLVE_X_LESSER|V_RLVE_Y_LESSER)

Flags defining what to do with slop:
V_SLOP_BITS 0x3C0
V_SLOP_X_SHRINK 0x040
V_SLOP_Y_SHRINK 0x080
V_SLOP_X_LEAVE 0x000
V_SLOP_Y_LEAVE 0x000
V_SLOP_X_EXPAND 0x100
V_SLOP_Y_EXPAND 0x200
V_SLOP_SHRINK V_SLOP_X_SHRINK | V_SLOP_Y_SHRINK
V_SLOP_LEAVE V_SLOP_X_LEAVE | V_SLOP_Y_LEAVE
V_SLOP_EXPAND V_SLOP_X_EXPAND | V_SLOP_Y_EXPAND

V_TA_NUM_COLORS 16
V_TA_NORMAL 0x10
V_TA_INVERSE 0x01

Enums

V_FDS_FCN_ENUM (dvfds.h)
typedef enum

{
V_FDS_FCN_DS_START = 0,
V_FDS_FCN_OPEN,
V_FDS_FCN_READ,
V_FDS_FCN_CLOSE,
V_FDS_FCN_DS_CREATE,
V_FDS_FCN_DS_DESTROY,
V_FDS_FCN_DS_SAVE,
V_FDS_FCN_DS_RESTORE,
V_FDS_FCN_WRITE,

/* flags for internal use */
V_FDS_FCN_SELECT,
V_FDS_FCN_DSV_CREATE,
V_FDS_FCN_DSV_DESTROY
V_FDS_FCN_SELECT_WRITE,

/* flags for internal use */
} V_FDS_FCN_ENUM;

V_IC_ATTR_ENUM (VOstd.h)
typedef enum

{
V_IC_ATTR_ARGEND = 0,
V_IC_HEIGHT, height in screen coordinates
V_IC_WIDTH, width in screen coordinates
V_IC_PIXMAP, icon is based on this pixmap
V_IC_PIXMAP_XFORM, how to transform pixmap colors to device’s
V_IC_MASK_PIXMAP, pixmap used for icon mask
V_IC_MASK_PIXMAP_XFORM, transform mask colors to draw/no draw
V_IC_RASTER actual raster used to draw icon
} V_IC_ATTR_ENUM;

V_IM_ATTR_ENUM (VOstd.h)
typedef enum

{
V_IM_ATTR_ARGEND = 0,
V_IM_PIXMAP, image is based on this pixmap
V_IM_PIXMAP_XFORM, how to transform pixmap colors to device’s
V_IM_MASK_PIXMAP, pixmap used for image mask
V_IM_MASK_PIXMAP_XFORM, transform mask colors to draw/no draw
V_IM_RASTER actual raster used to draw image
} V_IM_ATTR_ENUM;

V_PM_ATTR_ENUM (VOstd.h)
typedef enum

{
V_PM_ATTR_ARGEND = 0,
V_PM_HEIGHT, height of pixmap in pixels
V_PM_WIDTH, width of pixmap in pixels
V_PM_DEPTH, color depth
V_PM_COLOR_TABLE, colors used by pixmap

V_PM_INCLUDE_PIXELS, pixmap type is include or reference
V_PM_FILENAME, name of external file for referenced pixmaps
V_PM_RAW_DATA, data (and length) for included pixmaps
V_PM_BOUNDS, creating raster: portion of pixmap to use
V_PM_COLOR_XFORM, creating raster: color indices xform
V_PM_VERSION, number of changes since creation
V_PM_PIXREP_DATA pixrep used by the pixmap
} V_PM_ATTR_ENUM;

See Also VOpmGet, VOpmSet, VOpmSetRasterMask, VOpmToRaster

V_PM_FLIP_ENUM (VOstd.h)
typedef enum

{
V_PM_HORIZONTAL = 0,
V_PM_VERTICAL
} V_PM_FLIP_ENUM;

V_PM_FORMAT_ENUM (VOstd.h)
typedef enum

{
V_PM_GIF, Graphics Interchange Format
V_PM_PPM, Portable Pixmap
V_PM_RASTER, DataViews raster data
V_PM_TIFF, Tag Interchange File Format
V_PM_PIXREP DataViews device-independent format
} V_PM_FORMAT_ENUM;

See Also VOpmWrite

V_PM_MERGEMODE_ENUM (VOstd.h)
typedef enum

{
V_PM_COPY, source color index replaces target index
V_PM_AND, new target = source index AND old target
V_PM_OR, new target = source index OR old target
V_PM_XOR new target = source index XOR old target
} V_PM_MERGEMODE_ENUM;

See Also VOpmMerge

V_PX_FLIP_ENUM (VUpixrep.h)
typedef enum

{
V_PX_HORIZONTAL, flip around horizontal axis
V_PX_VERTICAL flip around vertical axis
} V_PX_FLIP_ENUM;

V_PX_MERGEMODE_ENUM (VUpixrep.h)
typedef enum

{
V_PX_COPY, copy source to target
V_PX_AND, new target = source AND old target
V_PX_OR, new target = source OR old target
V_PX_XOR new target = source XOR old target
} V_PX_MERGEMODE_ENUM;

V_UTA_AREA_ENUM (VUtextarray.h)
typedef enum

{
V_UTA_RECTANGLE=1,
V_UTA_AREA
} V_UTA_AREA_ENUM;

V_UTA_CURSOR_ENUM (VUtextarray.h)
typedef enum

{
NULL_ENUM=0,
V_UTA_UNDERSCORE,
V_UTA_REVERSE,
V_UTA_COLOR
} V_UTA_CURSOR_ENUM;

DataViews Private Types
These DataViews private types are defined in the following include files:

dvtools.h:
DRAWPORT ADDRESS
VIEW ADDRESS
DATASOURCELIST ADDRESS
DATASOURCE ADDRESS
DSVAR ADDRESS
OBJECT LONG
INHANDLER ADDRESS
PROTO_ENV ADDRESS

dvstd.h:
DATAGROUP ADDRESS
DISPFORM ADDRESS
SYMNODE ADDRESS
SYMTABLE ADDRESS
VARDESC ADDRESS

dvinteract.h:
EVENT_REQUEST ADDRESS

dvaxis.h:
AXISDESC ADDRESS

hashtypes.h:
HASHNODE struct
HASHTABLE struct

VUpixrep.h:
PIXSCAN struct
PIXPTR union

VUtextarray.h:
TEXTARRAY ADDRESS

DataViews Public Types

ANYTYPE typedef (dvstd.h)
typedef union ANYTYPE

{
char c;
UBYTE uc;
short s;
unsigned short us;
LONG l;
ULONG ul;
float f;
double d;
ADDRESS ptr;
union ANYTYPE *ap;
} ANYTYPE;

ATTRIBUTES typedef (VOstd.h)
typedef struct ATTRIBUTES

{
OBJECT foreground_color; foreground color object
OBJECT background_color; background color object
char line_width; integer specifying width of line in pixels [1,3]
char line_type; integer specifying style of line
char fill_status; whether object is filled
char text_direction; direction of text (VERTICAL or HORIZONTAL)
char text_position; one of nine possible positions of text anchor point
char text_font; integer hardware text font (currently unused)
char text_size; integer specifying size for hardware text [1,4]
char arc_direction; arc drawing direction
char curve_type; polygon curve type for B-splines
char *text_fontname; filename of vector text font
float text_width; horizontal vector text expansion factor
float text_height; vertical vector text expansion factor
float text_angle; counter-clockwise angle of text baseline from horizontal
float text_slant; clockwise angle of text slant from vertical
float text_charspace; inter-character spacing fraction
float text_linespace; inter-line spacing fraction
char *name; node or edge object name
RECTANGLE *node_bounds; bounding box of node
char edge_type; type of edge
char prop_fill; proportional fill
short fill_amount; proportion of area to fill [0,32K]
} ATTRIBUTES;

COLOR_SPEC typedef (dvstd.h)
typedef union COLOR_SPEC

{
LONG color_index; should always be >= 0
RGB_SPEC rgb_rep;
} COLOR_SPEC;

COLOR_TABLE typedef (dvstd.h)
typedef struct

{
int ctsize; size of color table
RGB_SPEC ct[256]; array of RGB values
} COLOR_TABLE;

COLOR_THRESHOLD typedef (dvstd.h)
typedef struct COLOR_THRESHOLD

{
short upperlimit;
COLOR_SPEC threshcolor;
} COLOR_THRESHOLD;

COLOR_XFORM typedef (dvstd.h)
typedef struct

{
int size;
int new_index[256];
} COLOR_XFORM;

DATUM typedef (VOstd.h)
typedef LONG DATUM;

DATUM_DESC typedef (VOstd.h)
typedef union

{
DATUM DATUM_alias;
float f;
LONG i;
OBJECT O;
char *t;
} DATUM_DESC;

DATUM_TYPE typedef (VOstd.h)
typedef int DATUM_TYPE;

DRAWPORT_ATTRIBUTES typedef (dvtools.h)
typedef struct DRAWPORT_ATTRIBUTES

{
RECTANGLE *vvp; where on the screen in virtual coordinates
RECTANGLE *wvp; portion of the view in world coords
DV_BOOL stretch_flag; TRUE: use TdpCreateStretch; FALSE: use TdpCreate
} DRAWPORT_ATTRIBUTES;

DV_COORD typedef (dvstd.h)
typedef LONG DV_COORD;

DV_POINT typedef (dvstd.h)
typedef struct DV_POINT

{
DV_COORD x;
DV_COORD y;
} DV_POINT;

FLOAT_POINT typedef (dvstd.h)
typedef struct FLOAT_POINT

{

float x, y;
} FLOAT_POINT;

LABEL_SIZE typedef (dvstd.h)
typedef struct

{
int StringLength; number of characters in the string
short NumLines; number of lines in the string
short LongestLine; number of characters in the longest line
} LABEL_SIZE;

NAME_VALUE_PAIR typedef (dvstd.h)
typedef struct

{
char *name;
char *value;
} NAME_VALUE_PAIR;

PIXREP typedef (dvstd.h)
typedef struct

{
int width, height; width and height of the pixrep in pixels
UBYTE depth; number of bits of color information
UBYTE bits_per_pixel; 1, 2, 4, 8, 16,or 32 bits
UBYTE row_alignment; If row_alignment is 8, rows are aligned on char; if 16, rows are aligned on

short; if 32, rows are aligned on LONG.
DV_BOOL origin_at_ll; YES if origin is in lower left. Otherwise, NO.
UBYTE pack_unit; If fewer than 8 bits per pixel, packing unit. The packing unit is the 8-, 16-, or

32-bit unit into which the data is packed.
DV_BOOL pack_msf_in_byte; If fewer than 8 bits per pixel, the order of pixels in the byte.
DV_BOOL pack_msf_in_unit; If fewer than 8 bits per pixel, the order of bytes in the unit.
LONG pixels_length; length of the pixel array
UBYTE *pixels; the array of pixels
COLOR_TABLE *pclut; If (pclut != NULL), pixels are indexed into color table.
DV_BOOL *color_used; An array of type DV_BOOL. Specifies which colors are used by the pixrep. If

color_used[i] is TRUE, the corresponding color in the color table is used in the
pixrep. If FALSE, the color isn’t used. If color_used is NULL, assumes all
colors are used. This field is optional, but can speed up some operations if used.

ULONG red_mask; information for finding the red
int red_shift; component of the pixel
ULONG grn_mask; information for finding the green
int grn_shift; component of the pixel
ULONG blu_mask; information for finding the blue
int blu_shift; component of the pixel
} PIXREP;

PLR_POINT typedef (dvstd.h)
typedef struct PLR_POINT

{
short radius;
short angle;
} PLR_POINT;

RECTANGLE typedef (dvstd.h)
typedef struct

{
DV_POINT ll; lower left corner of the rectangle

DV_POINT ur; upper right corner of the rectangle
} RECTANGLE;

RGB_SPEC typedef (dvstd.h)
typedef struct _RGB_SPEC for byte order 1234

{
char rgb_rep_flag; should be -1 when used in COLOR_SPEC
UBYTE red, green, blue;
} RGB_SPEC;

typedef struct for byte order 4321
UBYTE blue, green, red;
char rgb_rep_flag; should be -1 when used in COLOR_SPEC
} RGB_SPEC;

RULE_ARG typedef (dvrule.h)
typedef LONG RULE_ARG;

TA_PACKED_COLOR typedef (VUtextarray.h)
typedef UBYTE TA_PACKED_COLOR;

TA_POSITION typedef (VUtextarray.h)
typedef struct TA_POSITION

{
short row, col;
} TA_POSITION;

TA_RECT typedef (VUtextarray.h)
typedef struct TA_RECT

{
TA_POSITION ul, lr;
} TA_RECT;

V_Q_PICK_VDP typedef (dvstd.h)
typedef struct V_Q_PICK_VDP

{
DV_POINT location;
V_Q_VDP *vdp;
} V_Q_PICK_VDP;

V_Q_VDP typedef (dvstd.h)
typedef struct V_Q_VDP

{
VARDESC vdp;
int index;
} V_Q_VDP;

V_Q_VDP_LIST typedef (dvstd.h)
typedef struct V_Q_VDP_LIST

{
int count;
V_Q_VDP vdps[V_Q_PICKED_VDP_MAX];

} V_Q_VDP_LIST;

#define V_Q_PICKED_VDP_MAX 64

WINEVENT typedef (dvGR.h)
typedef struct _winevent

{
int devnum; device number of window where event occurred
ULONG type; WINEVENT type flag showing the type of event.
ULONG time; server’s recorded time of event in milliseconds
LONG count; number of events in the event queue
ADDRESS eventdata; copy of the window system’s event data structure
DV_POINT loc; location of cursor relative to window
RECTANGLE region; exposed region
DV_POINT maxpoint; new size of window
ULONG state; WINEVENT state flag showing the state of the keyboard
ULONG button; button code for mouse button events
ULONG keycode; physical key code (device-dependent)
ULONG keysym; virtual key symbol code, which are listed in the header files GRkeysymdef.h and

GRkeysym.h
char *keystring; key string
LONG nchars; length of key string
UBYTE firstchar; ASCII equivalent for the first character of key string
RECTANGLE *rectlist; array of exposed regions in screen coordinates
DV_POINT root_loc; location of cursor relative to the root window (not implemented for all drivers)
} WINEVENT;

DataViews FUNPTR Types

ADDRFUNPTR typedef (std.h)
typedef ADDRESS (*ADDRFUNPTR) ();

BOOLFUNPTR typedef (std.h)
typedef BOOLPARAM (*BOOLFUNPTR) ();

CHARFUNPTR typedef (std.h)
typedef char (*CHARFUNPTR) ();

DV_TICLABELFUNPTR typedef (dvtypes.h)
typedef void (*DV_TICLABELFUNPTR) (

ADDRESS argpcopy,
double *value
ADDRESS output
TIC_DATA *tdp);

GRPALPICKFUNPTR typedef (dvstd.h)
typedef int (*GRPALPICKFUNPTR) (

LONG fbcolor,
RECTANGLE *echovp);

INTFUNPTR typedef (std.h)
typedef int (*INTFUNPTR) ();

LONGFUNPTR typedef (std.h)
typedef LONG (*LONGFUNPTR) ();

SHORTFUNPTR typedef (std.h)
typedef short (*SHORTFUNPTR) ();

TDLFOREACHDSFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TDLFOREACHDSFUNPTR) (

DATASOURCE ds
ADDRESS argblock);

TDLFOREACHDSVFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TDLFOREACHDSVFUNPTR) (

DATASOURCE ds,
DSVAR dsv
ADDRESS argblock);

TDPTRAVERSEFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TDPTRAVERSEFUNPTR) (

DRAWPORT drawport,
ADDRESS redraw_vp);

TDRFOREACHNAMEDOBJFUNPTR typedef (dvtools.h)

typedef ADDRESS (*TDRFOREACHNAMEDOBJFUNPTR) (
OBJECT obj
char *name,
ADDRESS argblock);

TDSFOREACHVARFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TDSFOREACHVARFUNPTR) (

DSVAR dsv,
ADDRESS argblock);

TDSFREEFUNPTR typedef (dvtools.h)
typedef void (*TDSFREEFUNPTR) (

ADDRESS data);

TDSVFOREACHREFFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TDSVFOREACHREFFUNPTR) (

VARDESC vdp,
int type
ADDRESS argblock);

TDSVFOREACHVDPFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TDSVFOREACHVDPFUNPTR) (

VARDESC vdp,
ADDRESS argblock);

TDSVFREEFUNPTR typedef (dvtools.h)
typedef void (*TDSVFREEFUNPTR) (

ADDRESS data);

TOBFOREACHSUBOBJFUNPTR typedef (VOstd.h)
typedef ADDRESS (*TOBFOREACHSUBOBJFUNPTR) (

OBJECT subobj,
ADDRESS argblock);

TOBFOREACHVDPFUNPTR typedef (VOstd.h)
typedef ADDRESS (*TOBFOREACHVDPFUNPTR) (

OBJECT subobj,
VARDESC vdp,
ADDRESS argblock);

TVIFOREACHDSFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TVIFOREACHDSFUNPTR) (

DATASOURCE ds,
ADDRESS argblock);

TVIFOREACHVARFUNPTR typedef (dvtools.h)
typedef ADDRESS (*TVIFOREACHVARFUNPTR) (

DATASOURCE ds,
DSVAR dsv
ADDRESS argblock);

ULONGFUNPTR typedef (std.h)
typedef ULONG (*ULONGFUNPTR) ();

VGADDRACCESSFUNPTR typedef (dvstd.h)
typedef ADDRESS (*VGADDRACCESSFUNPTR) (

ADDRESS argp,
int i3,
int i2,
int i1);

VGDOUBLEACCESSFUNPTR typedef (dvstd.h)
typedef double *(*VGDOUBLEACCESSFUNPTR) (

ADDRESS argp,
int i,
int j,
int k);

VGLONGACCESSFUNPTR typedef (dvstd.h)
typedef LONG (*VGLONGACCESSFUNPTR) (

ADDRESS argp,
int i,
int j,
int k);

VODQADDFUNPTR typedef (VOstd.h)
typedef OBJECT (*VODQADDFUNPTR) (

OBJECT entity);

VODQCOMPAREFUNPTR typedef (VOstd.h)
typedef int (*VODQCOMPAREFUNPTR) (

OBJECT entity1,
OBJECT entity2);

VODQDELFUNPTR typedef (VOstd.h)
typedef void (*VODQDELFUNPTR) (

OBJECT entity);

VODQEQUALFUNPTR typedef (VOstd.h)
typedef BOOLPARAM (*VODQEQUALFUNPTR) (

OBJECT entity1,
OBJECT entity2);

VODRNAMETRVRSFUNPTR typedef (VOstd.h)
typedef ADDRESS (*VODRNAMETRVRSFUNPTR) (

int position,
OBJECT object,
char *name);

VOGDRAWFUNPTR typedef (VOstd.h)
typedef void (*VOGDRAWFUNPTR) (

ADDRESS drawargs);

VOIDFUNPTR typedef (std.h)
typedef VOID (*VOIDFUNPTR) ();

VOITECHOFUNPTR typedef (VOstd.h)
typedef void (*VOITECHOFUNPTR) (

OBJECT Input,
int Origin,
int State,
double *Value,
VARDESC Vdp,
RECTANGLE *EchoVP,
ADDRESS args);

VOOBTRAVERSEFUNPTR typedef (VOstd.h)
typedef BOOLPARAM (*VOOBTRAVERSEFUNPTR) (

OBJECT subobj,
ADDRESS testargs);

VPDGDFENTRYFUNPTR typedef (dvstd.h)
typedef int (*VPDGDFENTRYFUNPTR) ();

VTHTCOMPAREFUNPTR typedef (dvstd.h)
typedef int (*VTHTCOMPAREFUNPTR) (

ADDRESS key1,
ADDRESS key2);

VTHTCONVERTFUNPTR typedef (dvstd.h)
typedef ULONG (*VTHTCONVERTFUNPTR) (

ADDRESS newkey);

VTHTFREEKEYFUNPTR typedef (dvstd.h)
typedef void (*VTHTFREEKEYFUNPTR) (

ADDRESS key);

VTHTFREEVALFUNPTR typedef (dvstd.h)
typedef void (*VTHTFREEVALFUNPTR) (

ADDRESS value);

VTHTTRAVERSEFUNPTR typedef (dvstd.h)
typedef void (*VTHTTRAVERSEFUNPTR) (

ADDRESS key,
ADDRESS value,
ADDRESS args);

VTSTCOMPAREFUNPTR typedef (dvstd.h)
typedef int (*VTSTCOMPAREFUNPTR) (

ADDRESS searchkey,
ADDRESS key);

VTSTTRAVERSEFUNPTR typedef (dvstd.h)

typedef void (*VTSTTRAVERSEFUNPTR) (
ADDRESS key,
ADDRESS value,
ADDRESS args);

VUDGTRVRSFUNPTR typedef (dvtools.h)
typedef void (*VUDGTRVRSFUNPTR) (

DATAGROUP dgp);

VUSLTRVRSFUNPTR typedef (dvstd.h)
typedef int (*VUSLTRVRSFUNPTR) (

char *string,
int index,
ADDRESS argblock);

VUVDTRVRSFUNPTR typedef (dvtools.h)
typedef void (*VUVDTRVRSFUNPTR) (

VARDESC vdp);

Error Messages
Introduction
When an error occurs in a DV-Tools routine, a central error message processing routine is called that manages the
formatting and display of error messages. If the optimized DV-Tools library is used, some error messages will be
suppressed. A message is made up of four parts which are printed in the following format:

<<<<<Severity of error>>>>> Type of error
Routine name Additional explanation

Severity of error: There are two levels of severity for error messages that are issued by DV-Tools.

warning: A warning notifies you that an error occurred, but the error was not severe enough to prevent the entire
system from continuing to function. A message is printed, but execution of the program continues.

severe: A severe error notifies you that an error occurred and that the system cannot continue execution. A
message is printed and execution is halted.

Type of error: A message detailing the general nature of the problem. The possible messages are listed below, under
the Generic Error Messages heading, along with some suggestions as to the kind of problem that may have caused
the error.

Routine name: This is the name of the routine that detected the error. When opening a file, this will be the name of
the file that the system was attempting to open.

Additional explanation: A specific message giving a more complete description of the particular error. These are
listed below under the Specific Error Messages heading.

Error Messages
Introduction Introduction to the Error Messages Chapter
Generic Error Messages List of Generic DataViews Error Messages
Specific Error Messages List of Specific DataViews Error Messages

Generic Error Messages
Error Cause

Can’t open device. The specified device cannot be opened. The device may be
configured incorrectly.

Can’t open the file. The file does not exist, you do not have permission to
access the file, or the pathname is mistyped.

Data group has been deleted already. A subroutine has tried to delete a data group that has
already been deleted.

Data type of variable in descriptor is
unknown.

A variable type other than float has been specified.

Data table or array is full. Internal tables are full.
Data value out of range. You have specified too narrow a range for a variable.
DataViews internal coding error. Internal error.
Display formatter cannot handle data

group.
You have used a display format that is inappropriate; for

example, using an inappropriate number or shape
(dimension) of variables for the data type, or
specifying than one time slot for a graph type that can
more display only one time slot.

Display formatter not specified for data
group.

You have attempted to run the system without specifying a
display format for a particular data group.

Ill defined Input Object. The input object cannot be used given its current context.
For example, the object is not attached to a variable
descriptor of the proper type.

Ill defined Template. A template is not supplied when required, or the supplied
template is not of the proper type.

Ill defined Input Technique. The input technique is being used improperly. The specific
error message should give further information.

Illegal argument in call to routine. You have specified a bad file name or a structure that does
not exist; generally this is a typing error.

IMS linking error. Internal error.
Invalid action. The action cannot be performed or completed. The specific

error message should give further information.
Invalid data group structure. Data group not defined correctly.
Invalid error code. Internal error in the error handling mechanism.
Invalid variable descriptor structure. Variable descriptor not defined correctly.
No such device exists. You have specified a device name or number that is

unknown to your system; this may be a typing error,
the device has been detached or may not yet be
connected.

NOT IMPLEMENTED You have asked for a feature which is not yet operational.
Text cannot be split to fit in viewport. Text in your display is too long or the viewport you

specified is too small.
Text too tall to fit in viewport. The viewport you specified for the display is too small.
Text too wide to fit in viewport Text in your display is too long or the viewport you

specified is too small.
Variable descriptor has been deleted

already.
You have attempted to delete a variable descriptor that has

already been deleted.
Viewport too small for display formatter. The viewport is too small for the format you want to use.

Specific Error Messages
Error Cause Routines

Access function not saved. Tried to save a view that had an access
function associated with a variable
descriptor.

TviSave

Axis needs to have its length
specified.

Didn’t specify axis length before
drawing.

VUaxSetupForDrawing

Bad format name. Format argument must be one of
COLOR_COMPONENT,
COLOR_INDEX, COLOR_NAME,
COLOR_REFERENCE, or
COLOR_STRUCTURE.

VOcoCreate

Bad pointer to function. Passed in the address of something that
wasn’t a function.

VPdgdfentry

Boundary Points. Either the lower left or upper right
points are invalid point objects.

VOdgCreate

Can’t change attribute after
axis has been drawn.

Tried to change an attribute of an axis
after it had been drawn.

VUaxSet

Can’t delete last two points. In order for an object to be a polygon it
must have at least two points.

VOpyPtDelete

Can’t fit time display. Not enough room allocated for the
graph.

VDclock

Can’t fit value labels. Not enough room allocated for the
graph.

VDdial360, VDdial,
VDdigits, VDface,
VDhistdial, VDknob,
VDrects

Can’t use object lists. VNtoggle is not implemented for lists of
objects.

VNtoggle

Cannot embed Combiner or
Multiplexor in a
Combiner.

To prevent recursive use of composite
input objects, combiner and
multiplexor input objects may not
be used as components.

VNcombine

Cannot embed Combiner or
Multiplexor in a
Multiplexor.

To prevent recursive use of composite
input objects, combiner and
multiplexor input objects may not
be used as components of a
multiplexor.

VNmulti

Color index too big; used low
16-bits.

Tried to create a color object by
specifying color index and the
color index was too large.

VOcoCreate

Control Point index out of
range.

Specified the index of a non-existent
point.

VOpyPtAdd, VOpyPtDelete,
VOobPtGet, VOobPtSet

Couldn’t find data source
variable corresponding to
graph variable.

Couldn’t match up data source
variables in the view with the
variables attached to the data
group.

VDdrawing

Couldn’t fit tic labels in
context.

Not enough room allocated for the
graph.

VDfader

Couldn’t fit title in context. Not enough room allocated for the
graph.

VDfan

Couldn’t set string variable.
Incompatible destination.

Variable pointed to by variable
descriptor was not of type text.

VPvdSValue

Display Format not linked. Display formatter referred to in TInit

dispforms.stb has not been linked
into the DV-Tools application.

DRAWING already contains
the object.

Tried to add an object to a drawing
already containing that object.

VOdrObAdd

Drawing doesn’t contain the
object.

Tried to refer to an object that doesn’t
exist in the drawing.

VOdrAddName, VOdrObBottom,
VOdrObDelete, VOdrObErase,
VOdrObReplace, VOdrObTop

Drawing has component that
references itself.

Drawing could not be loaded because a
subdrawing in the drawing refers to
itself or a parent drawing.

VOuDrRetrieve

Event Posted with no
bounding rect. and no
keys.

Not enough information specified when
posting an event.

VUerRectEdgePost

First argument must be a data
source variable or a
variable descriptor.

First argument wasn’t of the
appropriate type.

VOvdCreate

First argument must be
DRAWING or a
DEQUE.

First argument was not a drawing or
deque.

VOuGetInList

Function not valid for object. Function does not apply to an object of
that type.

all VOob routines

Illegal access mode; no
change made.

Tried to define an access mode for the
variable that was invalid.

VPvd_accmode

Illegal logical device code
specified.

Specified logical device number for an
unopened or non-existent device.

VUgetdevnum, VUindextorgb,
VUrgbtoindex

Index out of range. The index argument specifying which
control point was to be set
indicates a non-existent point. For
deque objects, indicates a non-
existent deque entry.

VOobPtSet, VOdqGetEntry

Input file does not contain a
valid DATASOURCE.

Tried to load a file that was not the
result of a successful call to
TdsSave.

TdsLoad

Input file does not contain a
valid
DATASOURCELIST.

Tried to load a file that was not the
result of a successful call to
TdlSave.

TdlLoad

Input file does not contain a
valid DSVAR.

Tried to load a file that was not the
result of a successful call to
TdsSave.

TdsvLoadList

Input file does not contain a
valid VIEW.

Tried to load a file that doesn’t contain
a view.

TviFileLoad, TviLoad

Interaction needs a number,
not a text string.

The variable descriptor should not be of
type text string.

VNpalette

Interaction needs a text
string.

The variable descriptor should be of
type text string.

VNtext

Invalid control point. Tried to set control point to something
that is not a point object.

VOobPtSet

Logical device not open. Specified logical device number for an
unopened or non-existent device.

VUgetdevnum

Logical device table full. Ran out of space for storing device
information.

VUopendev_clut

Multiple windows not
available on this device.

Non-NULL window id used. TscOpenWindow

Must call
VUaxSetupForDrawing

Tried to get axis bounds before calling
VUaxSetupForDrawing.

VUaxGet

before getting axis
bounds.

Must have at least two
variables.

Only one variable is associated with the
data group.

VDimpulse, VDscatter,
VDweb

Must specify drawing or
filename.

When creating a subdrawing you must
specify a drawing or a filename
containing a drawing.

VOsdCreate

No current SCREEN. There is no currently active screen for
display.

VOscClose, VOscDraw,
VOscLocate, VOscPoll,
VOscRedraw, VOscReset,
VOscClosePoll, VOscLoSet,
VOscOpenPoll

No drawing specified. The
graph’s title should be
the drawing filename.

The title field of the data group did not
contain the name of a valid
viewfile.

VDdrawing

No more available windows. Limited number of windows available
on most devices.

TscOpenWindow

No room for clock hands. Not enough room allocated for the
graph.

VDanclock

No room for knob needle. Not enough room allocated for the
graph.

VDknob

No room for needle. Not enough room allocated for the
graph.

VDmeter

Non-NULL access function. Tried to load a view that had an access
function associated.

TviLoad

Not a valid DATASOURCE
VARIABLE.

The data source variable parameter
passed to this routine was invalid.

TdsAddDsVar,
TdsDeleteDsVar

Not a valid DATASOURCE. The data source parameter passed to
this routine was invalid.

TdlAddDataSource,
TdlDeleteDataSource,
TdsAddDsVar,
TdsClone,
TdsCloseData,
TdsDeleteDsVar,
TdsDestroy,
TdsEditAttributes,
TdsForEachVar,
TdsGetAttributes,
TdsGetName,
TdsMoveDataSource,
TdsOpenData,
TdsReadData,
TdsSave

Not a valid
DATASOURCELIST.

The data source list variable parameter
passed to this routine was invalid.

TdlAddDataSource,
TdlClone,
TdlCloseData,
TdlDeleteDataSource,
TdlDestroy,
TdlForEachDataSource,
TdlForEachVar,
TdlOpenData,
TdlReadData,
TdlSave,
TviMergeAddDataSources,
TviMergeDataSources,
TviPutDataSourceList

Not a valid DRAWPORT. The drawport parameter passed to this
routine was invalid.

TdpBack, TdpDestroy,
TdpDraw, TdpDrawNext,

TdpDrawNextObject,
TdpDrawObject,

TdpErase, TdpEraseObject,
TdpFront, TdpGetDrawingVp,
TdpGetScale, TdpGetScreen,
TdpGetScreenVp,
TdpGetXform, TdpIsDrawn,
TdpPan, TdpRedraw,
TdpZoom

Not a valid DSVAR. The data source variable passed to this
routine was invalid.

TdsvAttachVariableDescriptor,
TdsvClone,
TdsvDestroy,
TdsvDetachVariableDescriptor,
TdsvEditAttributes,
TdsvGetAttributes,
TvdPutDataSourceVariable

Not a valid object. Tried to replace an object in a drawing
with something that was an invalid
object.

VOdrObReplace

Not a valid VARDESC. The variable descriptor parameter
passed to this routine was invalid.

TvdPutDataSourceVariable

Not a valid VIEW. The view parameter passed to this
routine was invalid.

TdpCreate,
TdpCreateStretch,
TviASCIISave,
TviDestroy,
TviSave,
TviExciseDrawing,
TviFileLoad,TviFileSave,
TviGetDataSourceList,
TviGetDrawing,
TviMergeAddDataSources,
TviMergeDataSources,
TviMergeDrawing,
TviPutDataSourceList,
TviPutDrawing

Not a valid
xx
object.

The function was
called with an
object that was not
of the appropriate
type.

TloSetup VOobAtGet VOobAtSet
VOobBox VOobClone VOobDereference

VOobDraw VOobErase
VOobIntersect VOobPtGet VOobPtSet
VOobReference VOobTraverse
VOcoNdxGet VOcoRgbGet

VOdqAdd VOdqDelete VOdqSize
VOdqGetEntry VOdqHasEntry VOdqReplaceEntry

VOdgAddress VOdgReset VOdgUpdate
VOdrBackcolor VOdrForecolor
VOdrAddName VOdrDeleteName
VOdrGetName VOdrNameTraverse
VOdrObAdd VOdrObBottom
VOdrObDelete VOdrObErase
VOdrObReplace VOdrObTop
VOdrGetNamedObject VOinTechnique
VOinUpdate VOinGetFlag VOinPutFlag
VOinGetVarList VOinPutVarList

VOitGetInteraction VOitGetKeys
VOitGetTemplate VOitGetList
VOitKeyOrigin VOitListStart VOitPutKeys
VOitPutList VOitGetEchoFunction
VOitGetListValues VOitPutEchoFunction
VOitPutListValues VOloKey VOloScpGet
VOloWcpGet VOptMove VOpyPtAdd
VOpyPtDelete VOscSelect
VOscDeviceName VOsdRotate VOsdScale
VOsdDrGet

VOsdDrKeep VOsdDrSet VOsdFilename
VOtxGetString VOtxSetString
VOttReset

VOttScale VOttSize VOttUpdate
VOttVd VOttAddThresh VOttDelThresh

VOttGetThresh VOttLastGet VOttTypeGet
VOvdAddress VOvdChanged
VOvdReset

VOvdSwitch VOvdType VOvdDvGet
VOvdSvGet VOvdSvPut VOvtGetBound

VOvtGetString VOvtSetString
VOxfPoint

VOxfScale VOxfCatCreate VOxfDpPoint
VOxfInvCreate VOxfMatGet
VOxfMatCreate VOxfStCreate

Not drawing value labels. Not enough room allocated for the
graph.

VDpie

Not enough room for dial needle. Not enough room allocated for the
graph.

VDdial360

Not enough toggle items. There must be at least two items in a
toggle.

VNtoggle

Null or missing list of input objects. No input objects specified for the
interaction handler. Combiners and
multiplexors require a list of input
objects.

VNcombine, VNmulti

Number of values must equal
number of options.

There must be a one to one
correspondence between the list of
values and the list of options.

VNtoggle

Number of variable descriptors does
not match number of embedded
objects.

There isn’t a one to one correspondence
between the variable descriptors
and the list of input objects.

VNcombine, VNmulti

Object not in DEQUE. Tried to delete an object that wasn’t in
the list.

VOdqDelete

Out of xx heap space. There is no more room to store objects
of that type. Destroy unneeded
objects to make room.

VOobCreate, VOscOpen,
VOscOpenClut

Physical device not open. Specified physical device number for an
unopened or non-existent device.

VUgetdevindex

Pie would be too small. Not enough room allocated for the
graph.

VDpie

Pixel space coords require a
reference point.

When creating a point with pixel space
offset you must specify a reference
point.

VPptCreate

Polling not opened. In order to call VOscPoll you must call VOscPoll

VOscOpenPoll first.
Reference Point. The reference point specified was

invalid.
VOptCreate

Scale out of range. Tried to create a transform object with
scale factor that was either too large
or too small.

VOxfStCreate

SCREEN still has attached
viewports.

Destroy all drawports before closing
screen.

VOscClose

Stroke font file does not exist. Stroke file cannot be found. VOobAtSet, VOvtCreate
The Filled Lines chart must have a

samples count greater than one.
The slot count is one. VDline

The strip chart must have a samples
count greater than one.

The slot count is one. VDstrip

Threshold out of range. Tried to add a threshold that was outside
of the range of thresholds.

VOttAddThresh

THRESHOLD TABLE index out of
range.

Tried to refer to a threshold index that
did not exist.

VOttGetThresh

Type should be ’c’, ’n’, or ’t’. Flag type was invalid. VOvdCreate
Unknown attribute flag. Specified an invalid attribute flag. VUaxGet, VUaxSet
Unknown axis type. Axis flag must be TIME_AXIS,

FIRST_AXIS, or SECOND_AXIS.
VGdgaxlabel, VGdgticlabfcn,

VPdgaxlabel,
VPdgticlabfcn

Unknown color name. Specified an unknown color name when
trying to create a color.

VOcoCreate

Unknown data type. Variable descriptor referred to an
unknown data type.

VPvdValue, VPvdDValue,
VPvdIValue,
VPvdSValue

Unknown data type; assumed to
LONG integer.

Tried to specify a data type flag that was
invalid.

VPvdCreate

Unknown Key Origin. Key origin flag not in set of valid
choices.

VOitKeyOrigin

Unknown Key Type. Key type flag is not in the set of valid
choices. See dvinteract.h.

VOitGetKeys, VOitKeyOrigin,
VOitPutKeys

Unknown object type. Object argument can’t be recognized by
the program.

VOobPtGet, VOobPtSet

Variable descriptor already part of a
data group.

Tried to add a variable descriptor to a
data group that already contained a
variable descriptor.

VPdgvdadd, VPdgvinsert

Variable unreadable. Could not read the data source file. TdlRead, TdsRead
Viewport not changed. Viewport had values that were out of

range.
VPdgvp

